图书介绍

Verilog HDL高级数字设计 英文版pdf电子书版本下载

Verilog HDL高级数字设计  英文版
  • (美)迈克尔·西勒提著 著
  • 出版社: 北京:电子工业出版社
  • ISBN:9787121104770
  • 出版时间:2010
  • 标注页数:969页
  • 文件大小:54MB
  • 文件页数:997页
  • 主题词:硬件描述语言,Verilog HDL-程序设计-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

Verilog HDL高级数字设计 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction to Digital Design Methodology 1

1.1 Design Methodology—An Introduction 2

1.1.1 Design Specification 4

1.1.2 Design Partition 4

1.1.3 Design Entry 4

1.1.4 Simulation and Functional Verification 5

1.1.5 Design Integration and Verification 6

1.1.6 Presynthesis Sign-Off 6

1.1.7 Gate-Level Synthesis and Technology Mapping 6

1.1.8 Postsynthesis Design Validation 7

1.1.9 Postsynthesis Timing Verification 8

1.1.10 Test Generation and Fault Simulation 8

1.1.11 Placement and Routing 8

1.1.12 Physical and Electrical Design Rule Checks 9

1.1.13 Parasitic Extraction 9

1.1.14 Design Sign-Off 9

1.2 IC Technology Options 9

1.3 Overview 11

References 11

2 Review of Combinational Logic Design 13

2.1 Combinational Logic and Boolean Algebra 13

2.1.1 ASIC Library Cells 13

2.1.2 Boolean Algebra 16

2.1.3 DeMorgan's Laws 18

2.2 Theorems for Boolean Algebraic Minimization 18

2.3 Representation of Combinational Logic 21

2.3.1 Sum-of-Products Representation 23

2.3.2 Product-of-Sums Representation 26

2.4 Simplification of Boolean Expressions 27

2.4.1 Simplification with Exclusive-Or 36

2.4.2 Karnaugh Maps(SOP Form) 36

2.4.3 Karnaugh Maps(POS Form) 39

2.4.4 Karnaugh Maps and Don't-Cares 40

2.4.5 Extended Karnaugh Maps 41

2.5 Glitches and Hazards 42

2.5.1 Elimination of Static Hazards(SOP Form) 45

2.5.2 Summary:Elimination of Static Hazards in Two-Level Circuits 48

2.5.3 Static Hazards in Multilevel Circuits 49

2.5.4 Summary:Elimination of Static Hazards in Multilevel Circuits 52

2.5.5 Dynamic Hazards 52

2.6 Building Blocks for Logic Design 55

2.6.1 NAND-NOR Structures 55

2.6.2 Multiplexers 60

2.6.3 Demultiplexers 61

2.6.4 Encoders 62

2.6.5 Priority Encoder 63

2.6.6 Decoder 64

2.6.7 Priority Decoder 66

References 67

Problems 67

3 Fundamentals of Sequential Logic Design 69

3.1 Storage Elements 69

3.1.1 Latches 70

3.1.2 Transparent Latches 71

3.2 Flip-Flops 71

3.2.1 D-Type Flip-Flop 71

3.2.2 Master-Slave Flip-Flop 73

3.2.3 J-K Flip-Flops 75

3.2.4 T Flip-Flop 75

3.3 Busses and Three-State Devices 76

3.4 Design of Sequential Machines 80

3.5 State-Transition Graphs 82

3.6 Design Example:BCD to Excess-3 Code Converter 84

3.7 Serial-Line Code Converter for Data Transmission 90

3.7.1 Design Example:A Mealy-Type FSM for Serial Line-Code Conversion 92

3.7.2 Design Example:A Moore-Type FSM for Serial Line-Code Conversion 93

3.8 State Reduction and Equivalent States 95

References 99

Problems 100

4 Introduction to Logic Design with Verilog 103

4.1 Structural Models of Combinational Logic 104

4.1.1 Verilog Primitives and Design Encapsulation 104

4.1.2 Verilog Structural Models 107

4.1.3 Module Ports 108

4.1.4 Some Language Rules 108

4.1.5 ToP-Down Design and Nested Modules 109

4.1.6 Design Hierarchy and Source-Code Organization 111

4.1.7 Vectors in Verilog 113

4.1.8 Structural Connectivity 114

4.2 Logic System,Design Verification,and Test Methodology 118

4.2.1 Four-Value Logic and Signal Resolution in Verilog 119

4.2.2 Test Methodology 120

4.2.3 Signal Generators for Testbenches 123

4.2.4 Event-Driven Simulation 125

4.2.5 Testbench Template 125

4.2.6 Sized Numbers 126

4.3 Propagation Delay 126

43.1 Inertial Delay 129

4.3.2 Transport Delay 131

4.4 Truth Table Models of Combinational and Sequential Logic with Verilog 131

References 138

Problems 138

5 Logic Design with Behavioral Models of Combinational and Sequential Logic 141

5.1 Behavioral Modeling 141

5.2 A Brief Look at Data Types for Behavioral Modeling 143

5.3 Boolean Equation-Based Behavioral Models of Combinational Logic 143

5.4 Propagation Delay and Continuous Assignments 146

5.5 Latches and Level-Sensitive Circuits in Verilog 148

5.6 Cyclic Behavioral Models of Flip-Flops and Latches 150

5.7 Cyclic Behavior and Edge Detection 152

5.8 A Comparison of Styles for Behavioral Modeling 154

5.8.1 Continuous Assignment Models 154

5.8.2 Dataflow/RTL Models 156

5.8.3 Algorithm-Based Models 160

5.8.4 Naming Conventions:A Matter of Style 161

5.8.5 Simulation with Behavioral Models 162

5.9 Behavioral Models of Multiplexers,Encoders,and Decoders 162

5.10 Dataflow Models of a Linear-Feedback Shift Register 171

5.11 Modeling Digital Machines with Repetitive Algorithms 173

5.11.1 Intellectual Property Reuse and Parameterized Models 178

5.11.2 Clock Generators 180

5.12 Machines with Multicycle Operations 182

5.13 Design Documentation with Functions and Tasks:Legacy or Lunacy? 183

5.13.1 Tasks 184

5.13.2 Functions 185

5.14 Algorithmic State Machine Charts for Behavioral Modeling 187

5.15 ASMD Charts 191

5.16 Behavioral Models of Counters,Shift Registers,and Register Files 195

5.16.1 Counters 195

5.16.2 Shift Registers 202

5.16.3 Register Files and Arrays of Registers(Memories) 206

5.17 Switch Debounce,Metastability,and Synchronizers for Asynchronous Signals 208

5.18 Design Example:Keypad Scanner and Encoder 214

References 223

Problems 223

6 Synthesis of Combinational and Sequential Logic 235

6.1 Introduction to Synthesis 236

6.1.1 Logic Synthesis 237

6.1.2 RTL Synthesis 245

6.1.3 High-Level Synthesis 246

6.2 Synthesis of Combinational Logic 247

6.2.1 Synthesis of Priority Structures 252

6.2.2 Exploiting Logical Don't-Care Conditions 253

6.2.3 ASIC Cells and Resource Sharing 258

6.3 Synthesis of Sequential Logic with Latches 260

6.3.1 Accidental Synthesis of Latches 262

6.3.2 Intentional Synthesis of Latches 266

6.4 Synthesis of Three-State Devices and Bus Interfaces 269

6.5 Synthesis of Sequential Logic with Flip-Flops 272

6.6 Synthesis of Explicit State Machines 275

6.6.1 Synthesis of a BCD-to-Excess-3 Code Converter 276

6.6.2 Design Example:Synthesis of a Mealy-Type NRZ-to-Manchester Line Code Converter 281

6.6.3 Design Example:Synthesis of a Moore-Type NRZ-to-Manchester Line Code Converter 283

6.6.4 Design Example:Synthesis of a Sequence Recognizer 284

6.7 Registered Logic 292

6.8 State Encoding 300

6.9 Synthesis of Implicit State Machines,Registers,and Counters 302

6.9.1 Implicit State Machines 303

6.9.2 Synthesis of Counters 304

6.9.3 Synthesis of Registers 305

6.10 Resets 309

6.11 Synthesis of Gated Clocks and Clock Enables 313

6.12 Anticipating the Results of Synthesis 314

6.12.1 Synthesis of Data Types 314

6.12.2 Operator Grouping 314

6.12.3 Expression Substitution 315

6.13 Synthesis of Loops 318

6.13.1 Static Loops without Embedded Timing Controls 318

6.13.2 Static Loops with Embedded Timing Controls 321

6.13.3 Nonstatic Loops without Embedded Timing Controls 324

6.13.4 Nonstatic Loops with Embedded Timing Controls 326

6.13.5 State-Machine Replacements for Unsynthesizable Loops 329

6.14 Design Traps to Avoid 334

6.15 Divide and Conquer:Partitioning a Design 335

References 336

Problems 337

7 Design and Synthesis of Datapath Controllers 345

7.1 Partitioned Sequential Machines 345

7.2 Design Example:Binary Counter 347

7.3 Design and Synthesis of a RISC Stored-Program Machine 353

7.3.1 RISC SPM:Processor 355

7.3.2 RISC SPM:ALU 355

7.3.3 RISC SPM:Controller 355

7.3.4 RISC SPM:Instruction Set 356

7.3.5 RISC SPM:Controller Design 358

7.3.6 RISC SPM:Program Execution 372

7.4 Design Example:UART 375

7.4.1 UART Operation 376

7.4.2 UART Transmitter 377

7.4.3 UART Receiver 387

References 399

Problems 400

8 Programmable Logic and Storage Devices 415

8.1 Programmable Logic Devices 417

8.2 Storage Devices 417

8.2.1 Read-Only Memory(ROM) 418

8.2.2 Programmable ROM(PROM) 420

8.2.3 Erasable ROMs 421

8.2.4 ROM-Based Implementation of Combinational Logic 423

8.2.5 Verilog System Tasks for ROMs 423

8.2.6 Comparison of ROMs 426

8.2.7 ROM-Based State Machines 426

8.2.8 Flash Memory 430

8.2.9 Static Random Access Memory(SRAM) 430

8.2.10 Ferroelectric Nonvolatile Memory 452

8.3 Programmable Logic Array(PLA) 454

8.3.1 PLA Minimization 457

8.3.2 PLA Modeling 459

8.4 Programmable Array Logic(PAL) 463

8.5 Programmability of PLDs 464

8.6 Complex PLDs(CPLDs) 465

8.7 Field-Programmable Gate Arrays 466

8.7.1 The Role of FPGAs in the ASIC Market 467

8.7.2 FPGA Technologies 469

8.7.3 XILINX Virtex FPGAs 470

8.8 Embeddable and Programmable IP Cores for a System-on-a-Chip(SoC) 470

8.9 Verilog-Based Design Flows for FPGAs 472

8.10 Synthesis with FPGAs 473

References 476

Related Web Sites 476

Problems and FPGA-Based Design Exercises 476

9 Algorithms and Architectures for Digital Processors 515

9.1 Algorithms,Nested-Loop Programs,and Data Flow Graphs 516

9.2 Design Example:Halftone Pixel Image Converter 519

9.2.1 Baseline Design for a Halftone Pixel Image Converter 522

9.2.2 NLP-Based Architectures for the Halftone Pixel Image Converter 526

9.2.3 Minimum Concurrent Processor Architecture for a Halftone Pixel Image Converter 532

9.2.4 Halftone Pixel Image Converter:Design Tradeoffs 547

9.2.5 Architectures for Dataflow Graphs with Feedback 547

9.3 Digital Filters and Signal Processors 554

9.3.1 Finite-Duration Impulse Response Filter 557

9.3.2 Digital Filter Design Process 558

9.3.3 Infinite-Duration Impulse Response Filter 563

9.4 Building Blocks for Signal Processors 566

9.4.1 Integrators(Accumulators) 566

9.4.2 Differentiators 570

9.4.3 Decimation and Interpolation Filters 570

9.5 Pipelined Architectures 576

9.5.1 Design Example:Pipelined Adder 579

9.5.2 Design Example:Pipelined FIR Filter 583

9.6 Circular Buffers 586

9.7 Asynchronous FIFOs—Synchronization across Clock Domains 589

9.7.1 Simplified Asynchronous FIFO 590

9.7.2 Clock Domain Synchronization for an Asynchronous FIFO 599

References 619

Problems 620

10 Architectures for Arithmetic Processors 627

10.1 Number Representation 627

10.1.1 Signed Magnitude Representation of Negative Integers 628

10.1.2 Ones Complement Representation of Negative Integers 629

10.1.3 Twos Complement Representation of Positive and Negative Integers 630

10.1.4 Representation of Fractions 632

10.2 Functional Units for Addition and Subtraction 632

10.2.1 Ripple-Carry Adder 632

10.2.2 Carry Look-Ahead Adder 633

10.2.3 Overflow and Underflow 638

10.3 Functional Units for Multiplication 638

10.3.1 Combinational(Parallel)Binary Multiplier 639

10.3.2 Sequential Binary Multiplier 642

10.3.3 Sequential Multiplier Design:Hierarchical Decomposition 644

10.3.4 STG-Based Controller Design 646

10.3.5 Efficient STG-Based Sequential Binary Multiplier 652

10.3.6 ASMD-Based Sequential Binary Multiplier 658

10.3.7 Efficient ASMD-Based Sequential Binary Multiplier 664

10.3.8 Summary of ASMD-Based Datapath and Controller Design 669

10.3.9 Reduced-Register Sequential Multiplier 670

10.3.10 Implicit-State-Machine Binary Multiplier 675

10.3.11 Booth's Algorithm Sequential Multiplier 687

10.3.12 Bit-Pair Encoding 702

10.4 Multiplication of Signed Binary Numbers 710

10.4.1 Product of Signed Numbers:Negative Multiplicand,Positive Multiplier 710

10.4.2 Product of Signed Numbers:Positive Multiplicand,Negative Multiplier 710

10.4.3 Product of Signed Numbers:Negative Multiplicand,Negative Multiplier 710

10.5 Multiplication of Fractions 711

10.5.1 Signed Fractions:Positive Multiplicand,Positive Multiplier 714

10.5.2 Signed Fractions:Negative Multiplicand,Positive Multiplier 714

10.5.3 Signed Fractions:Positive Multiplicand,Negative Multiplier 714

10.5.4 Signed Fractions:Negative Multiplicand,Negative Multiplier 715

10.6 Functional Units for Division 715

10.6.1 Division of Unsigned Binary Numbers 716

10.6.2 Efficient Division of Unsigned Binary Numbers 724

10.6.3 Reduced-Register Sequential Divider 734

10.6.4 Division of Signed(2s Complement)Binary Numbers 739

10.6.5 Signed Arithmetic 739

References 742

Problems 742

11 Postsynthesis Design Tasks 749

11.1 Postsynthesis Design Validation 749

11.2 Postsynthesis Timing Verification 753

11.2.1 Static Timing Analysis 755

11.2.2 Timing Specifications 757

11.2.3 Factors That Affect Timing 760

11.3 Elimination of ASIC Timing Violations 766

11.4 False Paths 767

11.5 System Tasks for Timing Verification 769

11.5.1 Timing Check:Setup Condition 770

11.5.2 Timing Check:Hold Condition 770

11.5.3 Timing Check:Setup and Hold Conditions 771

11.5.4 Timing Check:Pulsewidth Constraint 773

11.5.5 Timing Check:Signal Skew Constraint 773

11.5.6 Timing Check:Clock Period 774

11.5.7 Timing Check:Recovery Time 774

11.6 Fault Simulation and Manufacturing Tests 775

11.6.1 Circuit Defects and Faults 776

11.6.2 Fault Detection and Testing 780

11.6.3 D-Notation 782

11.6.4 Automatic Test Pattern Generation for Combinational Circuits 786

11.6.5 Fault Coverage and Defect Levels 788

11.6.6 Test Generation for Sequential Circuits 788

11.7 Fault Simulation 792

11.7.1 Fault Collapsing 793

11.7.2 Serial Fault Simulation 793

11.7.3 Parallel Fault Simulation 794

11.7.4 Concurrent Fault Simulation 794

11.7.5 Probabilistic Fault Simulation 794

11.8 JTAG Ports and Design for Testability 794

11.8.1 Boundary Scan and JTAG Ports 795

11.8.2 JTAG Modes of Operation 796

11.8.3 JTAG Registers 798

11.8.4 JTAG Instructions 800

11.8.5 TAP Architecture 801

11.8.6 TAP Controller State Machine 803

11.8.7 Design Example:Testing with JTAG 807

11.8.8 Design Example:Built-In Self-Test 830

References 845

Problems 845

A Verilog Primitives 851

A.1 Multiinput Combinational Logic Gates 851

A.2 Multioutput Combinational Gates 853

A.3 Three-State Logic Gates 854

A.4 MOS Transistot Switches 855

A.5 MOS Pull-Up/Pull-Down Gates 860

A.6 MOS Bidirectional Switches 860

B Verilog Keywords 863

C Verilog Data Types 865

C.1 Nets 865

C.2 Register Variables 866

C.3 Constants 870

C.4 Referencing Arrays of Nets or Regs 871

D Verilog Operators 873

D.1 Arithmetic Operators 873

D.2 Bitwise Operators 875

D.3 Reduction Operators 875

D.4 Logical Operators 876

D.5 Relational Operators 877

D.6 Shift Operators 878

D.7 Conditional Operator 878

D.8 Concatenation Operator 879

D.9 Expressions and Operands 880

D.10 Operator Precedence 880

D.11 Arithmetic with Signed Data Types 881

D.12 Signed Literal Integers 882

D.13 System Functions for Sign Conversion 882

2.1.1 Assignment Width Extension 883

E Verilog Language Formal Syntax 885

F Verilog Language Formal Syntax 887

F.1 Source text 887

F.2 Declarations 890

F.3 Primitive instances 894

F.4 Module and generated instantiation 895

F.5 UDP declaration and instantiation 896

F.6 Behavioral statements 897

F.7 Specify section 901

F.8 Expressions 905

F.9 General 909

G Additional Features of Verilog 913

G.1 Arrays of Primitives 913

G.2 Arrays of Modules 913

G.3 Hierarchical Dereferencing 914

G.4 Parameter Substitution 915

G.5 Procedural Continuous Assignment 916

G.6 Intra-Assignment Delay 917

G.7 Indeterminate Assignment and Race Conditions 918

G.8 wait Statement 921

G.9 fork...join Statement 922

G.10 Named(Abstract)Events 922

G.11 Constructs Supported by Synthesis Tools 923

H Flip-Flop and Latch Types 925

I Verilog-2001,2005 927

I.1 ANSI C Style Changes 927

I.2 Code Management 930

I.3 Support for Logic Modeling 933

I.4 Support for Arithmetic 934

I.5 Sensitivity List for Event Control 940

I.6 Sensitivity List for Combinational Logic 940

I.7 Parameters 942

I.8 Instance Generation 944

J Programming Language Interface 949

K Web sites 951

L Web-Based Resources 953

Index 955

精品推荐