图书介绍

OpenCV 3计算机视觉 Python语言实现 vision with Pythonpdf电子书版本下载

OpenCV 3计算机视觉  Python语言实现  vision with Python
  • (爱尔兰)乔·米尼奇诺(Joe Minichino),(加)约瑟夫·豪斯(Joseph Howse)著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:9787111539759
  • 出版时间:2016
  • 标注页数:184页
  • 文件大小:23MB
  • 文件页数:202页
  • 主题词:图象处理软件-程序设计

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

OpenCV 3计算机视觉 Python语言实现 vision with PythonPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 安装OpenCV 1

1.1 选择和使用合适的安装工具 2

1.1.1 在Windows上安装 2

1.1.2 在OS X系统中安装 6

1.1.3 在Ubuntu及其衍生版本中安装 11

1.1.4.在其他类Unix系统中安装 12

1.2 安装Contrib模块 13

1.3 运行示例 13

1.4 查找文档、帮助及更新 14

1.5 总结 15

第2章 处理文件、摄像头和图形用户界面 16

2.1 基本I/O脚本 16

2.1.1 读/写图像文件 16

2.1.2 图像与原始字节之间的转换 19

2.1.3 使用numpy.array访问图像数据 20

2.1.4 视频文件的读/写 22

2.1.5 捕获摄像头的帧 23

2.1.6 在窗口显示图像 24

2.1.7 在窗口显示摄像头帧 25

2.2 Cameo项目(人脸跟踪和图像处理) 26

2.3 Cameo——面向对象的设计 27

2.3.1 使用managers.CaptureManager提取视频流 27

2.3.2 使用managers.WindowManager抽象窗口和键盘 32

2.3.3 cameo.Cameo的强大实现 33

2.4 总结 34

第3章 使用OpenCV 3处理图像 36

3.1 不同色彩空间的转换 36

3.2 傅里叶变换 37

3.2.1 高通滤波器 37

3.2.2 低通滤波器 39

3.3 创建模块 39

3.4 边缘检测 40

3.5 用定制内核做卷积 41

3.6 修改应用 43

3.7 Canny边缘检测 44

3.8 轮廓检测 45

3.9 边界框、最小矩形区域和最小闭圆的轮廓 46

3.10 凸轮廓与Douglas-Peucker算法 48

3.11 直线和圆检测 50

3.11.1 直线检测 50

3.11.2 圆检测 51

3.12 检测其他形状 52

3.13 总结 52

第4章 深度估计与分割 53

4.1 创建模块 53

4.2 捕获深度摄像头的帧 54

4.3 从视差图得到掩模 56

4.4 对复制操作执行掩模 57

4.5 使用普通摄像头进行深度估计 59

4.6 使用分水岭和GrabCut算法进行物体分割 63

4.6.1 用GrabCut进行前景检测的例子 64

4.6.2 使用分水岭算法进行图像分割 66

4.7 总结 69

第5章 人脸检测和识别 70

5.1 Haar级联的概念 70

5.2 获取Haar级联数据 71

5.3 使用OpenCV进行人脸检测 72

5.3.1 静态图像中的人脸检测 72

5.3.2 视频中的人脸检测 74

5.3.3 人脸识别 76

5.4 总结 82

第6章 图像检索以及基于图像描述符的搜索 83

6.1 特征检测算法 83

6.1.1 特征定义 84

6.1.2 使用DoG和SIFT进行特征提取与描述 86

6.1.3 使用快速Hessian算法和SURF来提取和检测特征 89

6.1.4 基于ORB的特征检测和特征匹配 91

6.1.5 ORB特征匹配 93

6.1.6 K-最近邻匹配 95

6.1.7 FLANN匹配 96

6.1.8 FLANN的单应性匹配 99

6.1.9 基于文身取证的应用程序示例 102

6.2 总结 105

第7章 目标检测与识别 106

7.1 目标检测与识别技术 106

7.1.1 HOG描述符 107

7.1.2 检测人 112

7.1.3 创建和训练目标检测器 113

7.2 汽车检测 116

7.2.1 代码的功能 118

7.2.2 SVM和滑动窗口 122

7.3 总结 134

第8章 目标跟踪 135

8.1 检测移动的目标 135

8.2 背景分割器:KNN、MOG2和GMG 138

8.2.1 均值漂移和CAMShift 142

8.2.2 彩色直方图 144

8.2.3 返回代码 146

8.3 CAMShift 147

8.4 卡尔曼滤波器 149

8.4.1 预测和更新 149

8.4.2 范例 150

8.4.3 一个基于行人跟踪的例子 153

8.4.4 Pedestrian类 154

8.4.5 主程序 157

8.5 总结 159

第9章 基于OpenCV的神经网络简介 160

9.1 人工神经网络 160

9.2 人工神经网络的结构 161

9.2.1 网络层级示例 162

9.2.2 学习算法 163

9.3 OpenCV中的ANN 164

9.3.1 基于.ANN的动物分类 166

9.3.2 训练周期 169

9.4 用人工神经网络进行手写数字识别 170

9.4.1 MNIST——手写数字数据库 170

9.4.2 定制训练数据 170

9.4.3 初始参数 171

9.4.4 迭代次数 171

9.4.5 其他参数 171

9.4.6 迷你库 172

9.4.7 主文件 175

9.5 可能的改进和潜在的应用 180

9.5.1 改进 180

9.5.2 应用 181

9.6 总结 181

精品推荐