图书介绍
机器学习pdf电子书版本下载
- 周志华著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302423287
- 出版时间:2016
- 标注页数:425页
- 文件大小:45MB
- 文件页数:440页
- 主题词:机器学习
PDF下载
下载说明
机器学习PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 绪论 1
1.1 引言 1
1.2 基本术语 2
1.3 假设空间 4
1.4 归纳偏好 6
1.5 发展历程 10
1.6 应用现状 13
1.7 阅读材料 16
习题 19
参考文献 20
休息一会儿 22
第2章 模型评估与选择 23
2.1 经验误差与过拟合 23
2.2 评估方法 24
2.3 性能度量 28
2.4 比较检验 37
2.5 偏差与方差 44
2.6 阅读材料 46
习题 48
参考文献 49
休息一会儿 51
第3章 线性模型 53
3.1 基本形式 53
3.2 线性回归 53
3.3 对数几率回归 57
3.4 线性判别分析 60
3.5 多分类学习 63
3.6 类别不平衡问题 66
3.7 阅读材料 67
习题 69
参考文献 70
休息一会儿 72
第4章 决策树 73
4.1 基本流程 73
4.2 划分选择 75
4.3 剪枝处理 79
4.4 连续与缺失值 83
4.5 多变量决策树 88
4.6 阅读材料 92
习题 93
参考文献 94
休息一会儿 95
第5章 神经网络 97
5.1 神经元模型 97
5.2 感知机与多层网络 98
5.3 误差逆传播算法 101
5.4 全局最小与局部极小 106
5.5 其他常见神经网络 108
5.6 深度学习 113
5.7 阅读材料 115
习题 116
参考文献 117
休息一会儿 120
第6章 支持向量机 121
6.1 间隔与支持向量 121
6.2 对偶问题 123
6.3 核函数 126
6.4 软间隔与正则化 129
6.5 支持向量回归 133
6.6 核方法 137
6.7 阅读材料 139
习题 141
参考文献 142
休息一会儿 145
第7章 贝叶斯分类器 147
7.1 贝叶斯决策论 147
7.2 极大似然估计 149
7.3 朴素贝叶斯分类器 150
7.4 半朴素贝叶斯分类器 154
7.5 贝叶斯网 156
7.6 EM算法 162
7.7 阅读材料 164
习题 166
参考文献 167
休息一会儿 169
第8章 集成学习 171
8.1 个体与集成 171
8.2 Boosting 173
8.3 Bagging与随机森林 178
8.4 结合策略 181
8.5 多样性 185
8.6 阅读材料 190
习题 192
参考文献 193
休息一会儿 196
第9章 聚类 197
9.1 聚类任务 197
9.2 性能度量 197
9.3 距离计算 199
9.4 原型聚类 202
9.5 密度聚类 211
9.6 层次聚类 214
9.7 阅读材料 217
习题 220
参考文献 221
休息一会儿 224
第10章 降维与度量学习 225
10.1 k近邻学习 225
10.2 低维嵌入 226
10.3 主成分分析 229
10.4 核化线性降维 232
10.5 流形学习 234
10.6 度量学习 237
10.7 阅读材料 240
习题 242
参考文献 243
休息一会儿 246
第11章 特征选择与稀疏学习 247
11.1 子集搜索与评价 247
11.2 过滤式选择 249
11.3 包裹式选择 250
11.4 嵌入式选择与L1正则化 252
11.5 稀疏表示与字典学习 254
11.6 压缩感知 257
11.7 阅读材料 260
习题 262
参考文献 263
休息一会儿 266
第12章 计算学习理论 267
12.1 基础知识 267
12.2 PAC学习 268
12.3 有限假设空间 270
12.4 VC维 273
12.5 Rademacher复杂度 279
12.6 稳定性 284
12.7 阅读材料 287
习题 289
参考文献 290
休息一会儿 292
第13章 半监督学习 293
13.1 未标记样本 293
13.2 生成式方法 295
13.3 半监督SVM 298
13.4 图半监督学习 300
13.5 基于分歧的方法 304
13.6 半监督聚类 307
13.7 阅读材料 311
习题 313
参考文献 314
休息一会儿 317
第14章 概率图模型 319
14.1 隐马尔可夫模型 319
14.2 马尔可夫随机场 322
14.3 条件随机场 325
14.4 学习与推断 328
14.5 近似推断 331
14.6 话题模型 337
14.7 阅读材料 339
习题 341
参考文献 342
休息一会儿 345
第15章 规则学习 347
15.1 基本概念 347
15.2 序贯覆盖 349
15.3 剪枝优化 352
15.4 一阶规则学习 354
15.5 归纳逻辑程序设计 357
15.6 阅读材料 363
习题 365
参考文献 366
休息一会儿 369
第16章 强化学习 371
16.1 任务与奖赏 371
16.2 K-摇臂赌博机 373
16.3 有模型学习 377
16.4 免模型学习 382
16.5 值函数近似 388
16.6 模仿学习 390
16.7 阅读材料 393
习题 394
参考文献 395
休息一会儿 397
附录 399
A 矩阵 399
B 优化 403
C 概率分布 409
后记 417
索引 419