图书介绍
功率半导体器件基础 英文版pdf电子书版本下载
- (美)B.JayantBaliga著 著
- 出版社: 北京:科学出版社
- ISBN:9787030343406
- 出版时间:2012
- 标注页数:1065页
- 文件大小:358MB
- 文件页数:1088页
- 主题词:功率半导体器件-英文
PDF下载
下载说明
功率半导体器件基础 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Introduction 1
1.1 Ideal and Typical Power Switching Waveforms 3
1.2 Ideal and Typical Power Device Characteristics 5
1.3 Unipolar Power Devices 8
1.4 Bipolar Power Devices 10
1.5 MOS-Bipolar Power Devices 11
1.6 Ideal Drift Region for Unipolar Power Devices 14
1.7 Charge-Coupled Structures:Ideal Specific On-Resistance 16
1.8 Summary 21
Problems 21
References 22
Chapter 2 Material Properties and Transport Physics 23
2.1 Fundamental Properties 23
2.1.1 Intrinsic Carrier Concentration 25
2.1.2 Bandgap Narrowing 26
2.1.3 Built-in Potential 30
2.1.4 Zero-Bias Depletion Width 32
2.1.5 Impact Ionization Coefficients 32
2.1.6 Carrier Mobility 34
2.2 Resistivity 51
2.2.1 Intrinsic Resistivity 51
2.2.2 Extrinsic Resistivity 51
2.2.3 Neutron Transmutation Doping 55
2.3 Recombination Lifetime 59
2.3.1 Shockley-Read-Hall Recombination 60
2.3.2 Low-Level Lifetime 63
2.3.3 Space-Charge Generation Lifetime 65
2.3.4 Recombination Level Optimization 66
2.3.5 Lifetime Control 75
2.3.6 Auger Recombination 80
2.4 Ohmic Contacts 82
2.5 Summary 84
Problems 84
References 86
Chapter 3 Breakdown Voltage 91
3.1 Avalanche Breakdown 92
3.1.1 Power Law Approximations for the Impact Ionization Coefficients 92
3.1.2 Multiplication Coefficient 94
3.2 Abrupt One-Dimensional Diode 95
3.3 Ideal Specific On-Resistance 100
3.4 Abrupt Punch-Through Diode 101
3.5 Linearly Graded Junction Diode 104
3.6 Edge Terminations 107
3.6.1 Planar Junction Termination 108
3.6.2 Planar Junction with Floating Field Ring 120
3.6.3 Planar Junction with Multiple Floating Field Rings 130
3.6.4 Planar Junction with Field Plate 132
3.6.5 Planar Junction with Field Plates and Field Rings 137
3.6.6 Bevel Edge Terminations 137
3.6.7 Etch Terminations 148
3.6.8 Junction Termination Extension 149
3.7 Open-Base Transistor Breakdown 155
3.7.1 Composite Bevel Termination 159
3.7.2 Double-Positive Bevel Termination 159
3.8 Surface Passivation 162
3.9 Summary 162
Problems 163
References 164
Chapter 4 Schottky Rectifiers 167
4.1 Power Schottky Rectifier Structure 168
4.2 Metal-Semiconductor Contact 169
4.3 Forward Conduction 171
4.4 Reverse Blocking 179
4.4.1 Leakage Current 180
4.4.2 Schottky Barrier Lowering 181
4.4.3 Prebreakdown Avalanche Multiplication 184
4.4.4 Silicon Carbide Rectifiers 185
4.5 Device Capacitance 187
4.6 Thermal Considerations 188
4.7 Fundamental Tradeoff Analysis 192
4.8 Device Technology 194
4.9 Barrier Height Adjustment 194
4.10 Edge Terminations 197
4.11 Summary 198
Problems 199
References 200
Chapter 5 P-i-N Rectifiers 203
5.1 One-Dimensional Structure 204
5.1.1 Recombination Current 205
5.1.2 Low-Level Injection Current 206
5.1.3 High-Level Injection Current 208
5.1.4 Injection into the End Regions 217
5.1.5 Carrier-Carrier Scattering Effect 219
5.1.6 Auger Recombination Effect 219
5.1.7 Forward Conduction Characteristics 221
5.2 Silicon Carbide P-i-N Rectifiers 230
5.3 Reverse Blocking 232
5.4 Switching Performance 236
5.4.1 Forward Recovery 236
5.4.2 Reverse Recovery 244
5.5 P-i-N Rectifier Structure with Buffer Layer 262
5.6 Nonpunch-Through P-i-N Rectifier Structure 263
5.7 P-i-N Rectifier Tradeoff Curves 270
5.8 Summary 274
Problems 275
References 276
Chapter 6 Power MOSFETs 279
6.1 Ideal Specific On-Resistance 280
6.2 Device Cell Structure and Operation 282
6.2.1 The V-MOSFET Structure 283
6.2.2 The VD-MOSFET Structure 284
6.2.3 The U-MOSFET Structure 285
6.3 Basic Device Characteristics 286
6.4 Blocking Voltage 289
6.4.1 Impact of Edge Termination 289
6.4.2 Impact of Graded Doping Profile 290
6.4.3 Impact of Parasitic Bipolar Transistor 291
6.4.4 Impact of Cell Pitch 293
6.4.5 Impact of Gate Shape 296
6.4.6 Impact of Cell Surface Topology 298
6.5 Forward Conduction Characteristics 300
6.5.1 MOS Interface Physics 301
6.5.2 MOS Surface Charge Analysis 305
6.5.3 Maximum Depletion Width 310
6.5.4 Threshold Voltage 311
6.5.5 Channel Resistance 321
6.6 Power VD-MOSFET On-Resistance 327
6.6.1 Source Contact Resistance 329
6.6.2 Source Region Resistance 330
6.6.3 Channel Resistance 331
6.6.4 Accumulation Resistance 332
6.6.5 JFET Resistance 333
6.6.6 Drift Region Resistance 335
6.6.7 N+ Substrate Resistance 339
6.6.8 Drain Contact Resistance 339
6.6.9 Total On-Resistance 340
6.7 Power VD-MOSFET Cell Optimization 343
6.7.1 Optimization of Gate Electrode Width 343
6.7.2 Impact of Breakdown Voltage 345
6.7.3 Impact of Design Rules 348
6.7.4 Impact of Cell Topology 350
6.8 Power U-MOSFET On-Resistance 358
6.8.1 Source Contact Resistance 359
6.8.2 Source Region Resistance 361
6.8.3 Channel Resistance 361
6.8.4 Accumulation Resistance 362
6.8.5 Drift Region Resistance 363
6.8.6 N+ Substrate Resistance 364
6.8.7 Drain Contact Resistance 365
6.8.8 Total On-Resistance 365
6.9 Power U-MOSFET Cell Optimization 368
6.9.1 Orthogonal P-Base Contact Structure 368
6.9.2 Impact of Breakdown Voltage 371
6.9.3 Ruggedness Improvement 372
6.10 Square-Law Transfer Characteristics 373
6.11 Superlinear Transfer Characteristics 377
6.12 Output Characteristics 381
6.13 Device Capacitances 385
6.13.1 Basic MOS Capacitance 386
6.13.2 Power VD-MOSFET Structure Capacitances 389
6.13.3 Power U-MOSFET Structure Capacitances 399
6.13.4 Equivalent Circuit 408
6.14 Gate Charge 409
6.14.1 Charge Extraction 409
6.14.2 Voltage and Current Dependence 417
6.14.3 VD-MOSFET vs.U-MOSFET Structure 421
6.14.4 Impact of VD-MOSFET and U-MOSFET Cell Pitch 423
6.15 Optimization for High Frequency Operation 426
6.15.1 Input Switching Power Loss 427
6.15.2 Output Switching Power Loss 432
6.15.3 Gate Propagation Delay 434
6.16 Switching Characteristics 436
6.16.1 Turn-On Transient 437
6.16.2 Turn-Off Transient 440
6.16.3 Switching Power Losses 443
6.16.4 [dV/dt] Capability 443
6.17 Safe Operating Area 447
6.17.1 Bipolar Second Breakdown 449
6.17.2 MOS Second Breakdown 451
6.18 Integral Body Diode 452
6.18.1 Reverse Recovery Enhancement 453
6.18.2 Impact of Parasitic Bipolar Transistor 453
6.19 High-Temperature Characteristics 454
6.19.1 Threshold Voltage 454
6.19.2 On-Resistance 455
6.19.3 Saturation Transconductance 456
6.20 Complementary Devices 457
6.20.1 The p-Channel Structure 458
6.20.2 On-Resistance 458
6.20.3 Deep-Trench Structure 459
6.21 Silicon Power MOSFET Process Technology 460
6.21.1 Planar VD-MOSFET Process 460
6.21.2 Trench U-MOSFET Process 462
6.22 Silicon Carbide Devices 465
6.22.1 The Baliga-Pair Configuration 465
6.22.2 Planar Power MOSFET Structure 476
6.22.3 Shielded Planar Power MOSFET Structures 481
6.22.4 Shielded Trench-Gate Power MOSFET Structure 489
6.23 Summary 498
Problems 499
References 503
Chapter 7 Bipolar Junction Transistors 507
7.1 Power Bipolar Junction Transistor Structure 508
7.2 Basic Operating Principles 510
7.3 Static Blocking Characteristics 513
7.3.1 Open-Emitter Breakdown Voltage 514
7.3.2 Open-Base Breakdown Voltage 514
7.3.3 Shorted Base-Emitter Operation 516
7.4 Current Gain 520
7.4.1 Emitter Injection Efficiency 522
7.4.2 Emitter Injection Efficiency with Recombination in the Depletion Region 526
7.4.3 Emitter Injection Efficiency with High-Level Injection in the Base 528
7.4.4 Base Transport Factor 533
7.4.5 Base Widening at High Collector Current Density 536
7.5 Emitter Current Crowding 550
7.5.1 Low-Level Injection in the Base 551
7.5.2 High-Level Injection in the Base 555
7.5.3 Emitter Geometry 559
7.6 Output Characteristics 560
7.7 On-State Characteristics 565
7.7.1 Saturation Region 566
7.7.2 Quasisaturation Region 571
7.8 Switching Characteristics 574
7.8.1 Turn-On Transition 575
7.8.2 Turn-Off Transition 588
7.9 Safe Operating Area 607
7.9.1 Forward-Biased Second Breakdown 608
7.9.2 Reverse-Biased Second Breakdown 611
7.9.3 Boundary for Safe Operating Area 615
7.10 Darlington Configuration 616
7.11 Summary 619
Problems 619
References 621
Chapter 8 Thyristors 625
8.1 Power Thyristor Structure and Operation 628
8.2 Blocking Characteristics 631
8.2.1 Reverse-Blocking Capability 632
8.2.2 Forward-Blocking Capability 636
8.2.3 Cathode Shorting 641
8.2.4 Cathode Shorting Geometry 644
8.3 On-State Characteristics 651
8.3.1 On-State Operation 652
8.3.2 Gate-Triggering Current 654
8.3.3 Holding Current 657
8.4 Switching Characteristics 662
8.4.1 Turn-On Time 663
8.4.2 Gate Design 671
8.4.3 Amplifying Gate Design 672
8.4.4 [dV/dt]Capability 675
8.4.5 Turn-Off Process 683
8.5 Light-Activated Thyristors 685
8.5.1 [dI/dt]Capability 686
8.5.2 Gate Region Design 687
8.5.3 Optically Generated Current Density 688
8.5.4 Amplifying Gate Design 690
8.6 Self-Protected Thyristors 691
8.6.1 Forward Breakdown Protection 691
8.6.2 [dV/dt]Turn-On Protection 694
8.7 The Gate Turn-Off Thyristor Structure 698
8.7.1 Basic Structure and Operation 698
8.7.2 One-Dimensional Tum-Off Criterion 701
8.7.3 One-Dimensional Storage Time Analysis 703
8.7.4 Two-Dimensional Storage Time Model 704
8.7.5 One-Dimensional Voltage Rise Time Model 706
8.7.6 One-Dimensional Current Fall Time Model 709
8.7.7 Switching Energy Loss 721
8.7.8 Maximum Turn-Off Current 722
8.7.9 Cell Design and Layout 725
8.8 The Triac Structure 726
8.8.1 Basic Structure and Operation 728
8.8.2 Gate-Triggering Mode 1 729
8.8.3 Gate-Triggering Mode 2 730
8.8.4 [dV/dt]Capability 731
8.9 Summary 733
Problems 733
References 735
Chapter 9 Insulated Gate Bipolar Transistors 737
9.1 Basic Device Structures 741
9.2 Device Operation and Output Characteristics 745
9.3 Device Equivalent Circuit 748
9.4 Blocking Characteristics 748
9.4.1 Symmetric Structure Forward-Blocking Capability 748
9.4.2 Symmetric Structure Reverse-Blocking Capability 753
9.4.3 Symmetric Structure Leakage Current 754
9.4.4 Asymmetric Structure Forward-Blocking Capability 760
9.4.5 Asymmetric Structure Reverse-Blocking Capability 767
9.4.6 Asymmetric Structure Leakage Current 769
9.5 On-State Characteristics 776
9.5.1 On-State Model 776
9.5.2 On-State Carrier Distribution:Symmetric Structure 783
9.5.3 On-State Voltage Drop:Symmetric Structure 791
9.5.4 On-State Carrier Distribution:Asymmetric Structure 796
9.5.5 On-State Voltage Drop:Asymmetric Structure 803
9.5.6 On-State Carrier Distribution:Transparent Emitter Structure 808
9.5.7 On-State Voltage Drop:Transparent Emitter Structure 813
9.6 Current Saturation Model 815
9.6.1 Carrier Distribution:Symmetric Structure 820
9.6.2 Output Characteristics:Symmetric Structure 828
9.6.3 Output Resistance:Symmetric Structure 833
9.6.4 Carrier Distribution:Asymmetric Structure 834
9.6.5 Output Characteristics:Asymmetric Structure 844
9.6.6 Output Resistance:Asymmetric Structure 848
9.6.7 Carrier Distribution:Transparent Emitter Structure 849
9.6.8 Output Characteristics:Transparent Emitter Structure 853
9.6.9 Output Resistance:Transparent Emitter Structure 855
9.7 Switching Characteristics 856
9.7.1 Turn-On Physics:Forward Recovery 857
9.7.2 Turn-Off Physics:No-Load Conditions 865
9.7.3 Turn-Off Physics:Resistive Load 867
9.7.4 Turn-Off Physics:Inductive Load 876
9.7.5 Energy Loss per Cycle 904
9.8 Power Loss Optimization 907
9.8.1 Symmetric Structure 907
9.8.2 Asymmetric Structure 909
9.8.3 Transparent Emitter Structure 911
9.8.4 Comparison of Tradeoff Curves 912
9.9 Complementary(P-Channel)Structure 913
9.9.1 On-State Characteristics 915
9.9.2 Switching Characteristics 919
9.9.3 Power Loss Optimization 919
9.10 Latch-Up Suppression 920
9.10.1 Deep P+ Diffusion 922
9.10.2 Shallow P+ Layer 928
9.10.3 Reduced Gate Oxide Thickness 931
9.10.4 Bipolar Current Bypass 936
9.10.5 Diverter Structure 939
9.10.6 Cell Topology 943
9.10.7 Latch-Up Proof Structure 948
9.11 Safe Operating Area 951
9.11.1 Forward-Biased Safe Operating Area 952
9.11.2 Reverse-Biased Safe Operating Area 956
9.11.3 Short-Circuit Safe Operating Area 960
9.12 Trench-Gate Structure 966
9.12.1 Blocking Mode 967
9.12.2 On-State Carrier Distribution 969
9.12.3 On-State Voltage Drop 971
9.12.4 Switching Characteristics 973
9.12.5 Safe Operating Area 974
9.12.6 Modified Structures 978
9.13 Blocking Voltage Scaling 980
9.13.1 N-Base Design 981
9.13.2 Power MOSFET Baseline 982
9.13.3 On-State Characteristics 982
9.13.4 Tradeoff Curve 985
9.14 High Temperature Operation 986
9.14.1 On-State Characteristics 986
9.14.2 Latch-Up Characteristics 989
9.15 Lifetime Control Techniques 991
9.15.1 Electron Irradiation 991
9.15.2 Neutron Irradiation 993
9.15.3 Helium Irradiation 993
9.16 Cell Optimization 994
9.16.1 Planar-Gate Structure 995
9.16.2 Trench-Gate Structure 999
9.17 Reverse Conducting Structure 1006
9.18 Summary 1014
Problems 1015
References 1020
Chapter 10 Synopsis 1027
10.1 Typical H-Bridge Topology 1027
10.2 Power Loss Analysis 1029
10.3 Low DC Bus Voltage Applications 1032
10.4 Medium DC Bus Voltage Applications 1037
10.5 High DC Bus Voltage Applications 1041
10.6 Summary 1045
Problems 1045
References 1047
Index 1049