图书介绍
人工智能及其应用 第3版pdf电子书版本下载
- 蔡自兴,徐光佑编著 著
- 出版社: 北京:清华大学出版社
- ISBN:7302068372
- 出版时间:2003
- 标注页数:304页
- 文件大小:28MB
- 文件页数:325页
- 主题词:人工智能-高等学校-教材
PDF下载
下载说明
人工智能及其应用 第3版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 绪论 1
1.1 人工智能的定义与发展 1
1.1.1 人工智能的定义 1
1.1.2 人工智能的起源与发展 2
1.2 人类智能与人工智能 4
1.2.1 智能信息处理系统的假设 4
1.2.2 人类智能的计算机模拟 7
1.3 人工智能各学派的认知观 8
1.4 人工智能的研究与应用领域 9
1.4.1 问题求解 10
1.4.2 逻辑推理与定理证明 10
1.4.3 自然语言理解 11
1.4.4 自动程序设计 11
1.4.6 机器学习 12
1.4.5 专家系统 12
1.4.7 神经网络 13
1.4.8 机器人学 14
1.4.9 模式识别 15
1.4.10 机器视觉 16
1.4.11 智能控制 17
1.4.12 智能检索 17
1.4.13 智能调度与指挥 18
1.4.14 分布式人工智能与Agent 18
1.4.15 计算智能与进化计算 19
1.4.16 数据挖掘与知识发现 20
1.4.17 人工生命 21
1.4.18 系统与语言工具 21
1.5 本书概要 22
习题 23
2.1.1 问题状态描述 24
第2章 知识表示方法 24
2.1 状态空间法 24
2.1.2 状态图示法 26
2.2 问题归约法 28
2.2.1 问题归约描述 28
2.2.2 与或图表示 30
2.3 谓词逻辑法 33
2.3.1 谓词演算 33
2.3.2 谓词公式 35
2.3.3 置换与合一 37
2.4 语义网络法 38
2.4.1 二元语义网络的表示 39
2.4.2 多元语义网络的表示 41
2.4.3 语义网络的推理过程 41
2.5 框架表示 44
2.5.1 框架的构成 45
2.5.2 框架的推理 47
2.6 剧本表示 48
2.6.1 剧本的构成 48
2.6.2 剧本的推理 49
2.7 过程表示 51
2.8 小结 52
习题 53
第3章 搜索推理技术 55
3.1 搜索策略 55
3.2 盲目搜索 57
3.2.1 宽度优先搜索 57
3.2.2 深度优先搜索 59
3.2.3 等代价搜索 61
3.3.1 启发式搜索策略和估价函数 62
3.3 启发式搜索 62
3.3.2 有序搜索 63
3.3.3 A*算法 66
3.4 消解原理 68
3.4.1 子句集的求取 68
3.4.2 消解推理规则 71
3.4.3 含有变量的消解式 71
3.4.4 消解反演求解过程 72
3.5 规则演绎系统 75
3.5.1 规则正向演绎系统 76
3.5.2 规则逆向演绎系统 81
3.5.3 规则双向演绎系统 84
3.6 产生式系统 85
3.6.1 产生式系统的组成 85
3.6.2 产生式系统的推理 88
3.6.3 产生式系统举例 90
3.7 系统组织技术 94
3.7.1 议程表 94
3.7.2 黑板法 95
3.7.3 △-极小搜索法 96
3.8 不确定性推理 96
3.8.1 关于证据的不确定性 96
3.8.2 关于结论的不确定性 97
3.8.3 多个规则支持同一事实时的不确定性 98
3.9 非单调推理 100
3.9.1 缺省推理 100
3.9.2 非单调推理系统 102
3.10 小结 105
习题 106
4.1 概述 109
第4章 计算智能(1):神经计算模糊计算 109
4.2 神经计算 111
4.2.1 人工神经网络研究的进展 111
4.2.2 人工神经网络的结构 112
4.2.3 人工神经网络的典型模型 114
4.2.4 基于神经网络的知识表示与推理 116
4.3 模糊计算 119
4.3.1 模糊集合、模糊逻辑及其运算 119
4.3.2 模糊逻辑推理 121
4.3.3 模糊判决方法 123
4.4 小结 125
习题 126
第5章 计算智能(2):进化计算人工生命 128
5.1 遗传算法 128
5.1.1 遗传算法的基本机理 129
5.1.2 遗传算法的求解步骤 131
5.2 进化策略 136
5.2.1 进化策略的算法模型 137
5.2.2 进化策略和遗传算法的区别 138
5.3 进化编程 138
5.3.1 进化编程的机理与表示 139
5.3.2 进化编程的步骤 140
5.4 人工生命 141
5.4.1 人工生命研究的起源和发展 141
5.4.2 人工生命的定义和研究意义 142
5.4.3 人工生命的研究内容和方法 144
5.4.4 人工生命的实例 146
5.5 小结 147
习题 148
6.1.1 专家系统的特点 149
第6章 专家系统 149
6.1 专家系统概述 149
6.1.2 专家系统的类型 150
6.1.3 专家系统的结构和建造步骤 153
6.2 基于规则的专家系统 156
6.3 基于框架的专家系统 157
6.4 基于模型的专家系统 160
6.5 新型专家系统 162
6.5.1 新型专家系统的特征 162
6.5.2 分布式专家系统 163
6.5.3 协同式专家系统 166
6.6 专家系统设计 167
6.6.1 专家知识的描述 167
6.6.2 知识的使用和决策解释 170
6.7 专家系统开发工具 172
6.8 小结 174
习题 175
第7章 机器学习 176
7.1 机器学习的定义和发展历史 176
7.1.1 机器学习的定义 176
7.1.2 机器学习的发展史 177
7.2 机器学习的主要策略与基本结构 179
7.2.1 机器学习的主要策略 179
7.2.2 机器学习系统的基本结构 179
7.3 机械学习 181
7.4 归纳学习 183
7.4.1 归纳学习的模式和规则 183
7.4.2 归纳学习方法 185
7.5 类比学习 186
7.5.1 类比推理和类比学习形式 187
7.5.2 类比学习过程与研究类型 188
7.6 解释学习 189
7.6.1 解释学习过程和算法 189
7.6.2 解释学习举例 190
7.7 神经学习 191
7.7.1 基于反向传播网络的学习 191
7.7.2 基于Hopfield网络的学习 197
7.8 知识发现 201
7.8.1 知识发现的发展和定义 202
7.8.2 知识发现的处理过程 203
7.8.3 知识发现的方法 204
7.8.4 知识发现的应用 206
7.9 小结 208
习题 208
8.1 机器人规划的作用与任务 210
第8章 自动规划 210
8.1.1 规划的作用与问题分解途径 211
8.1.2 机器人规划系统的任务与方法 212
8.2 积木世界的机器人规划 214
8.2.1 积木世界的机器人问题 214
8.2.2 用F规则求解规划序列 215
8.3 STRIPS规划系统 217
8.3.1 STRIPS系统的组成 218
8.3.2 STRIPS系统规划过程 218
8.3.3 含有多重解答的规划 221
8.4 具有学习能力的规划系统 224
8.4.1 PULP-Ⅰ系统的结构与操作方式 225
8.4.2 PULP-Ⅰ系统的世界模型和规划结果 226
8.5.2 NOAH规划系统 228
8.5.1 长度优先搜索 228
8.5 分层规划 228
8.6 基于专家系统的机器人规划 231
8.6.1 系统结构和规划机理 231
8.6.2 ROPES机器人规划系统 233
8.7 小结 237
习题 237
第9章 Agent(艾真体) 240
9.1 分布式人工智能 240
9.2 Agent及其要素 241
9.3 艾真体的结构 244
9.3.1 艾真体的结构特点 244
9.3.2 艾真体的结构分类 245
9.4 艾真体通信 248
9.4.1 通信的过程 248
9.4.2 艾真体通信的类型和方式 252
9.4.3 交谈的规划与实现 254
9.4.4 艾真体的通信语言 256
9.5 多艾真体系统 257
9.5.1 多艾真体系统的模型和结构 257
9.5.2 多艾真体系统的协作、协商和协调 259
9.5.3 多艾真体系统的学习与规划 262
9.5.4 多艾真体系统的研究和应用领域 263
9.6 小结 264
习题 265
第10章 自然语言理解 266
10.1 语言及其理解的一般问题 266
10.1.1 语言与语言理解 266
10.1.2 自然语言理解研究的进展 268
10.1.3 自然语言理解过程的层次 269
10.2.1 句法模式匹配和转移网络 270
10.2 句法和语义的自动分析 270
10.2.2 扩充转移网络 271
10.2.3 词汇功能语法(LFG) 274
10.2.4 语义的解析 275
10.3 句子的自动理解 277
10.3.1 简单句的理解方法 277
10.3.2 复合句的理解方法 280
10.4 语言的自动生成 281
10.5 自然语言理解系统应用举例 282
10.5.1 自然语言自动理解系统 282
10.5.2 自然语言问答系统 284
10.6 小结 285
习题 286
11.1.1 对人工智能理论的争论 288
11.1 人工智能的争论 288
第11章 人工智能的争论与展望 288
11.1.2 对人工智能方法的争论 289
11.1.3 对人工智能技术路线的争论 289
11.2 工智能对人类的影响 290
11.2.1 人工智能对经济的影响 290
11.2.2 人工智能对社会的影响 291
11.2.3 人工智能对文化的影响 292
11.3 对人工智能的展望 293
11.3.1 更新的理论框架 294
11.3.2 更好的技术集成 294
11.3.3 更成熟的应用方法 295
11.4 结束语 296
习题 296
参考文献 297