图书介绍

信号处理的小波导引 英文pdf电子书版本下载

信号处理的小波导引  英文
  • (法)马拉特(Mallat 著
  • 出版社: 北京:机械工业出版社
  • ISBN:7111127684
  • 出版时间:2003
  • 标注页数:637页
  • 文件大小:38MB
  • 文件页数:660页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

信号处理的小波导引 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ INTRODUCTION TO A TRANSIENT WORLD 2

1.1 Fourier Kingdom 2

1.2 Time-Frequency Wedding 2

1.2.1 Windowed Fourier Transform 3

1.2.2 Wavelet Transform 4

1.3 Bases of Time-Frequency Atoms 6

1.3.1 Wavelet Bases and Filter Banks 7

1.3.2 Tilings of Wavelet Packet and Local Cosine Bases 9

1.4 Bases for What? 11

1.4.1 Approximation 12

1.4.2 Estimation 14

1.4.3 Compression 16

1.5.1 Reproducible Computational Science 17

1.5 Travel Guide 17

1.5.2 Road Map 18

Ⅱ FOURIER KINGDOM 20

2.1 Linear Time-Invariant Filtering1 20

2.1.1 Impulse Response 21

2.1.2 Transfer Functions 22

2.2 Fourier Integrals1 22

2.2.1 Fourier Transform in L1(R) 23

2.2.2 Fourier Transform in L2(R) 25

2.2.3 Examples 27

2.3 Properties1 29

2.3.1 Regularity and Decay 29

2.3.2 Uncertainty Principle 30

2.3.3 Total Variation 33

2.4 Two-Dimensional Fourier Transform1 38

2.5 Problems 40

Ⅲ DISCRETE REVOLUTION 42

3.1 Sampling Analog Signals1 42

3.1.1 Whittaker Sampling Theorem 43

3.1.2 Aliasing 44

3.1.3 General Sampling Theorems 47

3.2 Discrete Time-Invariant Filters1 49

3.2.1 Impulse Response and Transfer Function 49

3.2.2 Fourier Series 51

3.3 Finite Signals1 54

3.3.1 Circular Convolutions 55

3.3.2 Discrete Fourier Transform 55

3.3.3 Fast Fourier Transform 57

3.3.4 Fast Convolutions 58

3.4 Discrete Image Processing1 59

3.4.1 Two-Dimensional Sampling Theorem 60

3.4.2 Discrete Image Filtering 61

3.4.3 Circular Convolutions and Fourier Basis 62

3.5 Problems 64

Ⅳ TIME MEETS FREQUENCY 67

4.1 Time-Frequency Atoms1 67

4.2 Windowed Fourier Transform1 69

4.2.1 Completeness and Stability 72

4.2.2 Choice of Window2 75

4.2.3 Discrete Windowed Fourier Transform2 77

4.3 Wavelet Transforms1 79

4.3.1 Real Wavelets 80

4.3.2 Analytic Wavelets 84

4.3.3 Discrete Wavelets2 89

4.4 Instantaneous Frequency2 91

4.4.1 Windowed Fourier Ridges 94

4.4.2 Wavelet Ridges 102

4.5 Quadratic Time-Frequency Energy1 107

4.5.1 Wigner-Ville Distribution 107

4.5.2 Interferences and Positivity 112

4.5.3 Cohen s Class2 116

4.5.4 Discrete Wigner-Ville Computations2 120

4.6 Problems 121

Ⅴ FRAMES 125

5.1 Frame Theory2 125

5.1.1 Frame Definition and Sampling 125

5.1.2 Pseudo Inverse 127

5.1.3 Inverse Frame Computations 132

5.1.4 Frame Projector and Noise Reduction 135

5.2 Windowed Fourier Frames2 138

5.3 Wavelet Frames2 143

5.4 Translation Invariance1 146

5.5 Dyadic Wavelet Transform2 148

5.5.1 Wavelet Design 150

5.5.2 Algorithme ? Trous 153

5.5.3 Oriented Wavelets for a Vision3 156

5.6 Problems 160

Ⅵ WAVELET ZOOM 163

6.1 Lipschitz Regularity1 163

6.1.1 Lipschitz Definition and Fourier Analysis 164

6.1.2 Wavelet Vanishing Moments 166

6.1.3 Regularity Measurements with Wavelets 169

6.2.1 Detection of Singularities 176

6.2 Wavelet Transform Modulus Maxima2 176

6.2.2 Reconstruction From Dyadic Maxima3 183

6.3 Multiscale Edge Detection2 189

6.3.1 Wavelet Maxima for Images2 189

6.3.2 Fast Multiscale Edge Computations3 197

6.4 Multifractals2 200

6.4.1 Fractal Sets and Self-Similar Functions 200

6.4.2 Singularity Spectrum3 205

6.4.3 Fractal Noises3 211

6.5 Problems 216

Ⅶ WAVELET BASES 220

7.1 Orthogonal Wavelet Bases1 220

7.1.1 Multiresolution Approximations 221

7.1.2 Scaling Function 224

7.1.3 Conjugate Mirror Filters 228

7.1.4 In Which Orthogonal Wavelets Finally Arrive 235

7.2 Classes of Wavelet Bases1 241

7.2.1 Choosing a Wavelet 241

7.2.2 Shannon, Meyer and Battle-Lemarié Wavelets 246

7.2.3 Daubechies Compactly Supported Wavelets 249

7.3 Wavelets and Filter Banks1 255

7.3.1 Fast Orthogonal Wavelet Transform 255

7.3.2 Perfect Reconstruction Filter Banks 259

7.3.3 Biorthogonal Bases of 12(Z)2 263

7.4 Biorthogonal Wavelet Bases2 265

7.4.1 Construction of Biorthogonal Wavelet Bases 265

7.4.2 Biorthogonal Wavelet Design2 268

7.4.3 Compactly Supported Biorthogonal Wavelets2 270

7.4.4 Lifting Wavelets3 273

7.5 Wavelet Bases on an Interval2 281

7.5.1 Periodic Wavelets 282

7.5.2 Folded Wavelets 284

7.5.3 Boundary Wavelets3 286

7.6 Multiscale Interpolations2 293

7.6.1 Interpolation and Sampling Theorems 293

7.6.2 Interpolation Wavelet Basis3 299

7.7 Separable Wavelet Bases1 303

7.7.1 Separable Multiresolutions 304

7.7.2 Two-Dimensional Wavelet Bases 306

7.7.3 Fast Two-Dimensional Wavelet Transform 310

7.7.4 Wavelet Bases in Higher Dimensions2 313

7.8 Problems 314

8.1.1 Wavelet Packet Tree 322

8.1 Wavelet Packets2 322

Ⅷ WAVELET PACKET AND LOCAL COSINE BASES 322

8.1.2 Time-Frequency Localization 327

8.1.3 Particular Wavelet Packet Bases 333

8.1.4 Wavelet Packet Filter Banks 336

8.2 Image Wavelet Packets2 339

8.2.1 Wavelet Packet Quad-Tree 339

8.2.2 Separable Filter Banks 341

8.3 Block Transforms1 343

8.3.1 Block Bases 344

8.3.2 Cosine Bases 346

8.3.3 Discrete Cosine Bases 349

8.3.4 Fast Discrete Cosine Transforms2 350

8.4 Lapped Orthogonal Transforms2 353

8.4.1 Lapped Projectors 353

8.4.2 Lapped Orthogonal Bases 359

8.4.3 Local Cosine Bases 361

8.4.4 Discrete Lapped Transforms 364

8.5 Local Cosine Trees2 368

8.5.1 Binary Tree of Cosine Bases 369

8.5.2 Tree of Discrete Bases 371

8.5.3 Image Cosine Quad-Tree 372

8.6 Problems 374

Ⅸ AN APPROXIMATION TOUR 377

9.1 Linear Approximations1 377

9.1.1 Linear Approximation Error 377

9.1.2 Linear Fourier Approximations 378

9.1.3 Linear Multiresolution Approximations 382

9.1.4 Karhunen-Loève Approximations2 385

9.2.1 Non-Linear Approximation Error 389

9.2 Non-Linear Approximations1 389

9.2.2 Wavelet Adaptive Grids 391

9.2.3 Besov Spaces3 394

9.3 Image Approximations with Wavelets1 398

9.4 Adaptive Basis Selection2 405

9.4.1 Best Basis and Schur Concavity 406

9.4.2 Fast Best Basis Search in Trees 411

9.4.3 Wavelet Packet and Local Cosine Best Bases 413

9.5 Approximations with Pursuits3 417

9.5.1 Basis Pursuit 418

9.5.2 Matching Pursuit 421

9.5.3 Orthogonal Matching Pursuit 428

9.6 Problems 430

10.1.1 Bayes Estimation 435

10.1 Bayes Versus Minimax2 435

Ⅹ ESTIMATIONS ARE APPROXIMATIONS 435

10.1.2 Minimax Estimation 442

10.2 Diagonal Estimation in a Basis2 446

10.2.1 Diagonal Estimation with Oracles 446

10.2.2 Thresholding Estimation 450

10.2.3 Thresholding Refinements3 455

10.2.4 Wavelet Thresholding 458

10.2.5 Best Basis Thresholding3 466

10.3 Minimax Optimality3 469

10.3.1 Linear Diagonal Minimax Estimation 469

10.3.2 Orthosymmetric Sets 474

10.3.3 Nearly Minimax with Wavelets 479

10.4.1 Estimation in Arbitrary Gaussian Noise 486

10.4 Restoration3 486

10.4.2 Inverse Problems and Deconvolution 491

10.5 Coherent Estimation3 501

10.5.1 Coherent Basis Thresholding 502

10.5.2 Coherent Matching Pursuit 505

10.6 Spectrum Estimation2 507

10.6.1 Power Spectrum 508

10.6.2 Approximate Karhunen-Loève Search3 512

10.6.3 Locally Stationary Processes3 516

10.7 Problems 520

Ⅺ TRANSFORM CODING 526

11.1 Signal Compression2 526

11.1.1 State of the Art 526

11.1.2 Compression in Orthonormal Bases 527

11.2 Distortion Rate of Quantization2 528

11.2.1 Entropy Coding 529

11.2.2 Scalar Quantization 537

11.3 High Bit Rate Compression2 540

11.3.1 Bit Allocation 540

11.3.2 Optimal Basis and Karhunen-Loève 542

11.3.3 Transparent Audio Code 544

11.4 Image Compression2 548

11.4.1 Deterministic Distortion Rate 548

11.4.2 Wavelet Image Coding 557

11.4.3 Block Cosine Image Coding 561

11.4.4 Embedded Transform Coding 566

11.4.5 Minimax Distortion Rate3 571

11.5 Video Signals2 577

11.5.1 Optical Flow 577

11.5.2 MPEG Video Compression 585

11.6 Problems 587

Appendix A MATHEMATICAL COMPLEMENTS 591

A.1 Functions and Integration 591

A.2 Banach and Hilbert Spaces 593

A.3 Bases of Hilbert Spaces 595

A.4 Linear Operators 596

A.5 Separable Spaces and Bases 598

A.6 Random Vectors and Covariance Operators 599

A.7 Diracs 601

Appendix B SOFTWARE TOOLBOXES 603

B.1 WAVELAB 603

8.2 LASTWAVE 609

B.3 Freeware Wavelet Toolboxes 610

BIBLIOGRAPHY 612

INDEX 629

精品推荐