图书介绍
自适应滤波器原理 第5版 英文版pdf电子书版本下载
- (加)Simon Haykin著 著
- 出版社: 北京:电子工业出版社
- ISBN:9787121322518
- 出版时间:2017
- 标注页数:908页
- 文件大小:373MB
- 文件页数:917页
- 主题词:跟踪滤波器-高等学校-教材-英文
PDF下载
下载说明
自适应滤波器原理 第5版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Background and Preview 19
1.The Filtering Problem 19
2.Linear Optimum Filters 22
3.Adaptive Filters 22
4.Linear Filter Structures 24
5.Approaches to the Development of Linear Adaptive Filters 30
6.Adaptive Beamforming 31
7.Four Classes of Applications 35
8.Historical Notes 38
Chapter 1 Stochastic Processes and Models 48
1.1 Partial Characterization of a Discrete-Time Stochastic Process 48
1.2 Mean Ergodic Theorem 50
1.3 Correlation Matrix 52
1.4 Correlation Matrix of Sine Wave Plus Noise 57
1.5 Stochastic Models 58
1.6 Wold Decomposition 64
1.7 Asymptotic Stationarity of an Autoregressive Process 67
1.8 Yule-Walker Equations 69
1.9 Computer Experiment:Autoregressive Process of Order Two 70
1.10 Selecting the Model Order 78
1.11 Complex Gaussian Processes 81
1.12 Power Spectral Density 83
1.13 Properties of Power Spectral Density 85
1.14 Transmission of a Stationary Process Through a Linear Filter 87
1.15 Cramér Spectral Representation for a Stationary Process 90
1.16 Power Spectrum Estimation 92
1.17 Other Statistical Characteristics of a Stochastic Process 95
1.18 Polyspectra 96
1.19 Spectral-Correlation Density 99
1.20 Summary and Discussion 102
Problems 103
Chapter 2 WienerFilters 108
2.1 Linear Optimum Filtering:Statement of the Problem 108
2.2 Principle of Orthogonality 110
2.3 Minimum Mean-Square Error 114
2.4 Wiener-Hopf Equations 116
2.5 Error-Performance Surface 118
2.6 Multiple Linear Regression Model 122
2.7 Example 124
2.8 Linearly Constrained Minimum-Variance Filter 129
2.9 Generalized Sidelobe Cancellers 134
2.10 Summary and Discussion 140
Problems 142
Chapter 3 Linear Prediction 150
3.1 Forward Linear Prediction 150
3.2 Backward Linear Prediction 157
3.3 Levinson-Durbin Algorithm 162
3.4 Properties of Prediction-Error Filters 171
3.5 Schur-Cohn Test 180
3.6 Autoregressive Modeling of a Stationary Stochastic Process 182
3.7 Cholesky Factorization 185
3.8 Lattice Predictors 188
3.9 All-Pole,A11-Pass Lattice Filter 193
3.10 Joint-Process Estimation 195
3.11 Predictive Modeling of Speech 199
3.12 Summary and Discussion 206
Problems 207
Chapter 4 Method of Steepest Descent 217
4.1 Basic Idea of the Steepest-Descent Algorithm 217
4.2 The Steepest-Descent Algorithm Applied to the Wiener Filter 218
4.3 Stability of the Steepest-Descent Algorithm 222
4.4 Example 227
4.5 The Steepest-Descent Algorithm Viewed as a Deterministic Search Method 239
4.6 Virtue and Limitation of the Steepest-Descent Algorithm 240
4.7 Summary and Discussion 241
Problems 242
Chapter 5 Method of Stochastic Gradient Descent 246
5.1 Principles of Stochastic Gradient Descent 246
5.2 Application 1:Least-Mean-Square(LMS)Algorithm 248
5.3 Application 2:Gradient-Adaptive Lattice Filtering Algorithm 255
5.4 Other Applications of Stochastic Gradient Descent 262
5.5 Summary and Discussion 263
Problems 264
Chapter 6 The Least-Mean-Square(LMS)Algorithm 266
6.1 Signal-Flow Graph 266
6.2 Optimality Considerations 268
6.3 Applications 270
6.4 Statistical Learning Theory 290
6.5 Transient Behavior and Convergence Considerations 301
6.6 Efficiency 304
6.7 Computer Experiment on Adaptive Prediction 306
6.8 Computer Experiment on Adaptive Equalization 311
6.9 Computer Experiment on a Minimum-Variance Distortionless-Response Beamformer 320
6.10 Summary and Discussion 324
Problems 326
Chapter 7 Normalized Least-Mean-Square(LMS)Algorithm and Its Generalization 333
7.1 Normalized LMS Algorithm:The Solution to a Constrained Optimization Problem 333
7.2 Stability of the Normalized LMS Algorithm 337
7.3 Step-Size Control for Acoustic Echo Cancellation 340
7. 4 Geometric Considerations Pertaining to the Convergence Process for Real-Valued Data 345
7.5 Affine Projection Adaptive Filters 348
7.6 Summary and Discussion 352
Problems 353
Chapter 8 Block-Adaptive Filters 357
8.1 Block-Adaptive Filters:Basic Ideas 358
8.2 Fast Block LMS Algorithm 362
8.3 Unconstrained Frequency-Domain Adaptive Filters 368
8.4 Self-Orthogonalizing Adaptive Filters 369
8.5 Computer Experiment on Adaptive Equalization 379
8.6 Subband Adaptive Filters 385
8.7 Summary and Discussion 393
Problems 394
Chapter 9 Method of Least-Squares 398
9.1 Statement of the Linear Least-Squares Estimation Problem 398
9.2 Data Windowing 401
9.3 Principle of Orthogonality Revisited 402
9.4 Minimum Sum of Error Squares 405
9.5 Normal Equations and Linear Least-Squares Filters 406
9.6 Time-Average Correlation Matrix Ф 409
9.7 Reformulation of the Normal Equations in Terms of Data Matrices 411
9.8 Properties of Least-Squares Estimates 415
9.9 Minimum-Variance Distortionless Response(MVDR)Spectrum Estimation 419
9.10 Regularized MVDR Beamforming 422
9.11 Singular-Value Decomposition 427
9.12 Pseudoinverse 434
9.13 Interpretation of Singular Values and Singular Vectors 436
9.14 Minimum-Norm Solution to the Linear Least-Squares Problem 437
9.15 Normalized LMS Algorithm Viewed as the Minimum-Norm Solution to an Underdetermined Least-Squares Estimation Problem 440
9.16 Summary and Discussion 442
Problems 443
Chapter 10 The Recursive Least-Squares(RLS)Algorithm 449
10.1 Some Preliminaries 449
10.2 The Matrix Inversion Lemma 453
10.3 The Exponentially Weighted RLS Algorithm 454
10.4 Selection of the Regularization Parameter 457
10.5 Updated Recursion for the Sum of Weighted Error Squares 459
10.6 Example:Single-Weight Adaptive Noise Canceller 461
10.7 Statistical Learning Theory 462
10.8 Efficiency 467
10.9 Computer Experiment on Adaptive Equalization 468
10.10 Summary and Discussion 471
Problems 472
Chapter 11 Robustness 474
11.1 Robustness,Adaptation.and Disturbances 474
11.2 Robustness:Preliminary Considerations Rooted in H∞ Optimization 475
11.3 Robustness of the LMS Algorithm 478
11.4 Robustness of the RLS Algorithm 483
11.5 Comparative Evaluations of the LMS and RLS Algorithms from the Perspective of Robustness 488
11.6 Risk-Sensitive Optimality 488
11.7 Trade-Offs Between Robustness and Efficiency 490
11.8 Summary and Discussion 492
Problems 492
Chapter 12 Finite-Precision Effects 497
12.1 Quantization Errors 498
12.2 Least-Mean-Square(LMS)Algorithm 500
12.3 Recursive Least-Squares(RLS)Algorithm 509
12.4 Summary and Discussion 515
Problems 516
Chapter 13 Adaptation in Nonstationary Environments 518
13.1 Causes and Consequences of Nonstationarity 518
13.2 The System Identification Problem 519
13.3 Degree of Nonstationarity 522
13.4 Criteria for Tracking Assessment 523
13.5 Tracking Performance of the LMS Algorithm 525
13.6 Tracking Performance of the RLS Algorithm 528
13.7 Comparison of the Tracking Performance of LMS and RLS Algorithms 532
13.8 Tuning of Adaptation Parameters 536
13.9 Incremental Delta-Bar-Delta(IDBD)Algorithm 538
13.10 Autostep Method 544
13.11 Computer Experiment:Mixture of Stationary and Nonstationary Environmental Data 548
13.12 Summary and Discussion 552
Problems 553
Chapter 14 Kalman Filters 558
14.1 Recursive Minimum Mean-Square Estimation for Scalar Random Variables 559
14.2 Statement of the Kalman Filtering Problem 562
14.3 The Innovations Process 565
14.4 Estimation of the State Using the Innovations Process 567
14.5 Filtering 573
14.6 Initial Conditions 575
14.7 Summary of the Kalman Filter 576
14.8 Optimality Criteria for Kalman Filtering 577
14.9 KalmanFilter as the Unifying Basis for RLS Algorithms 579
14.10 Covariance Filtering Algorithm 584
14.11 Information Filtering Algorithm 586
14.12 Summary and Discussion 589
Problems 590
Chapter 15 Square-Root Adaptive Filtering Algorithms 594
15.1 Square-Root Kalman Filters 594
15.2 Building Square-Root Adaptive Filters on the Two Kalman Filter Variants 600
15.3 QRD-RLS Algorithm 601
15.4 Adaptive Beamforming 609
15.5 Inverse QRD-RLS Algorithm 616
15.6 Finite-Precision Effects 619
15.7 Summary and Discussion 620
Problems 621
Chapter 16 Order-Recursive Adaptive Filtering Algorithm 625
16.1 Order-Recursive Adaptive Filters Using Least-Squares Estimation:An Overview 626
16.2 Adaptive Forward Linear Prediction 627
16.3 Adaptive Backward Linear Prediction 630
16.4 Conversion Factor 633
16.5 Least-Squares Lattice(LSL) Predictor 636
16.6 Angle-Normalized Estimation Errors 646
16.7 First-Order State-Space Models for Lattice Filtering 650
16.8 QR-Decomposition-Based Least-Squares Lattice(QRD-LSL)Filters 655
16.9 Fundamental Properties of the QRD-LSL Filter 662
16.10 Computer Experiment on Adaptive Equalization 667
16.11 Recursive(LSL)Filters Using A Posteriori Estimation Errors 672
16.12 Recursive LSL Filters Using A Priori Estimation Errors with Error Feedback 675
16.13 Relation Between Recursive LSL and RLS Algorithms 680
16.14 Finite-Precision Effects 683
16.15 Summary and Discussion 685
Problems 687
Chapter 17 Blind Deconvolution 694
17.1 Overview of Blind Deconvolution 694
17.2 Channel Identifiability Using Cyclostationary Statistics 699
17.3 Subspace Decomposition for Fractionally Spaced Blind Identification 700
17.4 Bussgang Algorithm for Blind Equalization 714
17.5 Extension of the Bussgang Algorithm to Complex Baseband Channels 731
17.6 Special Cases of the Bussgang Algorithm 732
17.7 Fractionally Spaced Bussgang Equalizers 736
17.8 Estimation of Unknown Probability Distribution Function of Signal Source 741
17.9 Summary and Discussion 745
Problems 746
Epilogue 750
1. Robustness,Efficiency,and Complexity 750
2. Kernel-Based Nonlinear Adaptive Filtering 753
Appendix A Theory of Complex Variables 770
A.1 Cauchy-Riemann Equations 770
A.2 Cauchy's Integral Formula 772
A.3 Laurent's Series 774
A.4 Singularities and Residues 776
A.5 Cauchy's Residue Theorem 777
A.6 Principle of the Argument 778
A.7 Inversion Integral for the z-Transform 781
A.8 Parseval's Theorem 783
Appendix B Wirtinger Calculus for Computing Complex Gradients 785
B.1 Wirtinger Calculus:Scalar Gradients 785
B.2 Generalized Wirtinger Calculus:Gradient Vectors 788
B.3 Another Approach to Compute Gradient Vectors 790
B.4 Expressions for the Partial Derivatives ?f/?z and ?f/?z* 791
Appendix C Method of Lagrange Multipliers 792
C.1 Optimization Involving a Single Equality Constraint 792
C.2 Optimization Involving Multiple Equality Constraints 793
C.3 Optimum Beamformer 794
Appendix D Estimation Theory 795
D.1 Likelihood Function 795
D.2 Cramér-Rao Inequality 796
D.3 Properties of Maximum-Likelihood Estimators 797
D.4 Conditional Mean Estimator 798
Appendix E Eigenanalysis 800
E.1 The Eigenvalue Problem 800
E.2 Properties of Eigenvalues and Eigenvectors 802
E.3 Low-Rank Modeling 816
E.4 Eigenfilters 820
E.5 Eigenvalue Computations 822
Appendix F Langevin Equation of Nonequilibrium Thermodynamics 825
F.1 Brownian Motion 825
F.2 Langevin Equation 825
Appendix G Rotations and Reflections 827
G.1 Plane Rotations 827
G.2 Two-Sided Jacobi Algorithm 829
G.3 Cyclic Jacobi Algorithm 835
G.4 Householder Transformation 838
G.5 The QR Algorithm 841
Appendix H Complex Wishart Distribution 848
H.1 Definition 848
H.2 The Chi-Square Distribution as a Special Case 849
H.3 Properties of the Complex Wishart Distribution 850
H.4 Expectation of the Inverse Correlation Matrix Ф-1(n) 851
Glossary 852
Text Conventions 852
Abbreviations 855
Principal Symbols 858
Bibliography 864
Suggested Reading 879
Index 897