图书介绍

精通Python自然语言处理pdf电子书版本下载

精通Python自然语言处理
  • (印度)Deepti Chopra,Nisheeth Joshi,Iti Mathur 著
  • 出版社: 北京:人民邮电出版社
  • ISBN:9787115459688
  • 出版时间:2017
  • 标注页数:208页
  • 文件大小:22MB
  • 文件页数:223页
  • 主题词:软件工具-自然语言处理

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

精通Python自然语言处理PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 字符串操作 1

1.1 切分 1

1.1.1 将文本切分为语句 2

1.1.2 其他语言文本的切分 2

1.1.3 将句子切分为单词 3

1.1.4 使用TreebankWordTokenizer执行切分 4

1.1.5 使用正则表达式实现切分 5

1.2 标准化 8

1.2.1 消除标点符号 8

1.2.2 文本的大小写转换 9

1.2.3 处理停止词 9

1.2.4 计算英语中的停止词 10

1.3 替换和校正标识符 11

1.3.1 使用正则表达式替换单词 11

1.3.2 用其他文本替换文本的示例 12

1.3.3 在执行切分前先执行替换操作 12

1.3.4 处理重复字符 13

1.3.5 去除重复字符的示例 13

1.3.6 用单词的同义词替换 14

1.3.7 用单词的同义词替换的示例 15

1.4 在文本上应用Zipf定律 15

1.5 相似性度量 16

1.5.1 使用编辑距离算法执行相似性度量 16

1.5.2 使用Jaccard系数执行相似性度量 18

1.5.3 使用Smith Waterman距离算法执行相似性度量 19

1.5.4 其他字符串相似性度量 19

1.6 小结 20

第2章 统计语言建模 21

2.1 理解单词频率 21

2.1.1 为给定的文本开发MLE 25

2.1.2 隐马尔科夫模型估计 32

2.2 在MLE模型上应用平滑 34

2.2.1 加法平滑 34

2.2.2 Good Turing平滑 35

2.2.3 Kneser Ney平滑 40

2.2.4 Witten Bell平滑 41

2.3 为MLE开发一个回退机制 41

2.4 应用数据的插值以便获取混合搭配 42

2.5 通过复杂度来评估语言模型 42

2.6 在语言建模中应用Metropolis-Hastings算法 43

2.7 在语言处理中应用Gibbs采样法 43

2.8 小结 46

第3章 形态学:在实践中学习 47

3.1 形态学简介 47

3.2 理解词干提取器 48

3.3 理解词形还原 51

3.4 为非英文语言开发词干提取器 52

3.5 形态分析器 54

3.6 形态生成器 56

3.7 搜索引擎 56

3.8 小结 61

第4章 词性标注:单词识别 62

4.1 词性标注简介 62

默认标注 67

4.2 创建词性标注语料库 68

4.3 选择一种机器学习算法 70

4.4 涉及n-gram的统计建模 72

4.5 使用词性标注语料库开发分块器 78

4.6 小结 80

第5章 语法解析:分析训练资料 81

5.1 语法解析简介 81

5.2 Treebank建设 82

5.3 从Treebank提取上下文无关文法规则 87

5.4 从CFG创建概率上下文无关文法 93

5.5 CYK线图解析算法 94

5.6 Earley线图解析算法 96

5.7 小结 102

第6章 语义分析:意义很重要 103

6.1 语义分析简介 103

6.1.1 NER简介 107

6.1.2 使用隐马尔科夫模型的NER系统 111

6.1.3 使用机器学习工具包训练NER 117

6.1.4 使用词性标注执行NER 117

6.2 使用Wordnet生成同义词集id 119

6.3 使用Wordnet进行词义消歧 122

6.4 小结 127

第7章 情感分析:我很快乐 128

7.1 情感分析简介 128

7.1.1 使用NER执行情感分析 134

7.1.2 使用机器学习执行情感分析 134

7.1.3 NER系统的评估 141

7.2 小结 159

第8章 信息检索:访问信息 160

8.1 信息检索简介 160

8.1.1 停止词删除 161

8.1.2 使用向量空间模型进行信息检索 163

8.2 向量空间评分及查询操作符关联 170

8.3 使用隐性语义索引开发IR系统 173

8.4 文本摘要 174

8.5 问答系统 176

8.6 小结 177

第9章 语篇分析:理解才是可信的 178

9.1 语篇分析简介 178

9.1.1 使用中心理论执行语篇分析 183

9.1.2 指代消解 184

9.2 小结 188

第10章 NLP系统评估:性能分析 189

10.1 NLP系统评估要点 189

10.1.1 NLP工具的评估(词性标注器、词干提取器及形态分析器) 190

10.1.2 使用黄金数据执行解析器评估 200

10.2 IR系统的评估 201

10.3 错误识别指标 202

10.4 基于词汇搭配的指标 202

10.5 基于句法匹配的指标 207

10.6 使用浅层语义匹配的指标 207

10.7 小结 208

精品推荐