图书介绍

用户网络行为画像 大数据中的用户网络行为画像分析与内容推荐应用pdf电子书版本下载

用户网络行为画像  大数据中的用户网络行为画像分析与内容推荐应用
  • 牛温佳,刘吉强,石川等著 著
  • 出版社: 北京:电子工业出版社
  • ISBN:7121280701
  • 出版时间:2016
  • 标注页数:223页
  • 文件大小:28MB
  • 文件页数:234页
  • 主题词:互联网络-研究

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

用户网络行为画像 大数据中的用户网络行为画像分析与内容推荐应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

上篇 3

第1章 用户画像概述 3

1.1 用户画像数据来源 3

1.1.1 用户属性 5

1.1.2 用户观影行为 5

1.2 用户画像特性 5

1.2.1 动态性 5

1.2.2 时空局部性 6

1.3 用户画像应用领域 6

1.3.1 搜索引擎 6

1.3.2 推荐系统 7

1.3.3 其他业务定制与优化 7

1.4 大数据给用户画像带来的机遇与挑战 8

第2章 用户画像建模 9

2.1 用户定量画像 9

2.2 用户定性画像 10

2.2.1 标签与用户定性画像 10

2.2.2 基于知识的用户定性画像分析 12

2.2.3 用户定性画像的构建 16

2.2.4 定性画像知识的存储 22

2.2.5 定性画像知识的推理 26

2.3 本章参考文献 29

第3章 群体用户画像分析 31

3.1 用户画像相似度 32

3.1.1 定量相似度计算 32

3.1.2 定性相似度计算 34

3.1.3 综合相似度计算 35

3.2 用户画像聚类 36

第4章 用户画像管理 41

4.1 存储机制 41

4.1.1 关系型数据库 42

4.1.2 NoSQL数据库 43

4.1.3 数据仓库 45

4.2 查询机制 46

4.3 定时更新机制 47

4.3.1 获取实时用户信息 47

4.3.2 更新触发条件 48

4.3.3 更新机制 49

中篇 55

第5章 视频推荐概述 55

5.1 主流推荐方法的分类 56

5.1.1 协同过滤的推荐方法 56

5.1.2 基于内容的推荐方法 57

5.1.3 基于知识的推荐方法 59

5.1.4 混合推荐方法 60

5.2 推荐系统的评测方法 61

5.3 视频推荐与用户画像的逻辑关系 61

第6章 协同过滤推荐方法 65

6.1 概述 65

6.2 关系矩阵及矩阵计算 67

6.2.1 U-U矩阵 67

6.2.2 V-V矩阵 70

6.2.3 U-V矩阵 72

6.3 基于记忆的协同过滤算法 74

6.3.1 基于用户的协同过滤算法 75

6.3.2 基于物品的协同过滤算法 78

6.4 基于模型的协同过滤算法 81

6.4.1 基于隐因子模型的推荐算法 82

6.4.2 基于朴素贝叶斯分类的推荐算法 85

6.5 小结 88

6.6 本章参考文献 88

第7章 基于内容的推荐方法 91

7.1 概述 91

7.2 CB推荐中的特征向量 94

7.2.1 视频推荐中的物品画像 94

7.2.2 视频推荐中的用户画像 96

7.3 基础CB推荐算法 97

7.4 基于TF-IDF的CB推荐算法 99

7.5 基于KNN的CB推荐算法 102

7.6 基于Rocchio的CB推荐算法 104

7.7 基于决策树的CB推荐算法 106

7.8 基于线性分类的CB推荐算法 107

7.9 基于朴素贝叶斯的CB推荐算法 109

7.10 小结 111

7.11 本章参考文献 111

第8章 基于知识的推荐方法 113

8.1 概述 113

8.2 约束知识与约束推荐算法 114

8.2.1 约束知识示例 114

8.2.2 约束满足问题 115

8.2.3 约束推荐算法流程 117

8.3 关联知识与关联推荐算法 118

8.3.1 关联规则描述 118

8.3.2 关联规则挖掘 121

8.3.3 关联推荐算法流程 123

8.4 小结 124

8.5 本章参考文献 124

第9章 混合推荐方法 125

9.1 概述 125

9.2 算法设计层面的混合方法 126

9.2.1 并行式混合 126

9.2.2 整体式混合 129

9.2.3 流水线式混合 131

9.2.4 典型混合应用系统 133

9.3 混合式视频推荐实例 136

9.3.1 MoRe系统概览 136

9.3.2 MoRe算法介绍 137

9.3.3 MoRe算法混合 139

9.3.4 MoRe实验分析 140

9.4 小结 142

9.5 本章参考文献 142

第10章 视频推荐评测 145

10.1 概述 145

10.2 视频推荐试验方法 146

10.2.1 在线评测 147

10.2.2 离线评测 149

10.2.3 用户调查 150

10.3 视频离线推荐评测指标 151

10.3.1 准确度指标 151

10.3.2 多样性指标 159

10.4 小结 161

10.5 本章参考文献 162

下 篇 165

第11章 系统层面的快速推荐构建 165

11.1 概述 165

11.2 本章主要内容 166

11.3 系统部署 166

11.3.1 Hadoop2.2.0系统部署 166

11.3.2 Hadoop运行时环境设置 169

11.3.3 Spark与Mahout部署 175

11.4 Mahout推荐引擎介绍 181

11.4.1 Item-based算法 181

11.4.2 矩阵分解 185

11.4.3 ALS算法 187

11.4.4 Mahout的Spark实现 190

11.5 快速实战 193

11.5.1 概述 193

11.5.2 日志数据 194

11.5.3 运行环境 196

11.5.4 基于Mahout Item-based算法实践 201

11.5.5 基于Mahout ALS算法实践 205

11.6 小结 208

11.7 本章参考文献 208

第12章 数据层面的分析与推荐案例 211

12.1 概述 211

12.2 本章主要内容 212

12.3 竞赛内容和意义 212

12.3.1 竞赛简介 212

12.3.2 竞赛任务和意义 213

12.4 客户-商户数据 215

12.4.1 数据描述 215

12.4.2 数据理解与分析 217

12.5 算法流程设计 219

12.5.1 特征提取 219

12.5.2 分类器设计 220

12.5.3 算法流程总结 222

12.6 小结 222

12.7 本章参考文献 223

精品推荐