图书介绍

群体智能算法及其应用pdf电子书版本下载

群体智能算法及其应用
  • 王培崇著 著
  • 出版社: 中国工信出版集团;电子工业出版社
  • ISBN:9787121260483
  • 出版时间:2015
  • 标注页数:161页
  • 文件大小:48MB
  • 文件页数:172页
  • 主题词:计算机算法-最优化算法

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

群体智能算法及其应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 群体智能算法概述 1

1.1 群体智能算法的特点 1

1.1.1 智能性 1

1.1.2 隐含本质并行性 2

1.1.3 解的近似性 2

1.2 群体智能算法的计算模式 2

1.2.1 社会协作机制 3

1.2.2 自我适应机制 3

1.2.3 竞争机制 4

1.3 遗传算法 4

1.3.1 标准遗传算法原理 5

1.3.2 编码机制与主要算子 7

1.4 差异演化算法 8

1.5 粒子群算法 10

1.5.1 粒子群算法的原理 10

1.5.2 PSO算法的计算模型 11

1.6 教—学优化算法 13

1.7 顾问引导搜索算法 13

1.8 本章小结 15

参考文献 16

第2章 人工鱼群算法 18

2.1 人工鱼群算法的数学模型 18

2.2 人工鱼群算法的收敛性分析 21

2.2.1 常用距离 21

2.2.2 基于Markfov链技术的收敛性分析 22

2.2.3 基于压缩映射定理的收敛性分析 25

2.3 人工鱼群算法的相关研究 26

2.3.1 参数的改进 27

2.3.2 与其他智能算法的融合 28

2.3.3 其他的改进方法 29

2.4 本章小结 32

参考文献 32

第3章 人工鱼群算法的改进研究 34

3.1 小生境人工鱼群算法 34

3.1.1 小生境技术 34

3.1.2 算法实现 36

3.1.3 算法的收敛性 36

3.1.4 仿真实验与分析 38

3.1.5 结论 40

3.2 自适应人工鱼群算法 40

3.2.1 参数自适应机制 40

3.2.2 算法实现 42

3.2.3 仿真实验与分析 42

3.2.4 结论 44

3.3 基于种群分类的人工鱼群算法 44

3.3.1 种群分类思想及设置 45

3.3.2 算法实现 46

3.3.3 仿真实验与分析 47

3.3.4 结论 50

3.4 混和反向学习人工鱼群算法 50

3.4.1 反向学习 50

3.4.2 佳点集 51

3.4.3 人工鱼群算法的改进机制 51

3.4.4 仿真实验与分析 54

3.4.5 结论 59

3.5 精英竞争人工鱼群算法 59

3.5.1 基于动态随机搜索的精英训练 59

3.5.2 算法实现 60

3.5.3 仿真实验与分析 61

3.5.4 结论 67

3.6 随机游走人工鱼群算法 67

3.6.1 Lévy Flight机制 67

3.6.2 算法改进思想 68

3.6.3 算法实现 69

3.6.4 仿真实验与分析 70

3.6.5 结论 72

3.7 混合群搜索人工鱼群算法 73

3.7.1 标准群搜索优化算法 73

3.7.2 群搜索优化算法的改进 75

3.7.3 混合群搜索人工鱼群算法 77

3.7.4 仿真实验与分析 78

3.7.5 结论 81

3.8 本章小结 81

参考文献 82

第4章 烟花爆炸优化算法及改进 83

4.1 烟花爆炸优化算法 83

4.2 混沌烟花爆炸优化算法 86

4.2.1 混沌搜索算法 86

4.2.2 算法实现 87

4.2.3 仿真实验与分析 87

4.2.4 结论 91

4.3 混合动态搜索烟花爆炸优化算法 91

4.3.1 算法实现 91

4.3.2 仿真实验与分析 92

4.3.3 结论 96

4.4 混合反向学习烟花爆炸优化算法 96

4.4.1 精英反向学习 96

4.4.2 基于模拟退火机制的种群选择 97

4.4.3 算法实现 97

4.4.4 仿真实验与分析 98

4.4.5 结论 102

4.5 随机游走烟花爆炸优化算法 102

4.5.1 基于随机游走机制的变异算子 103

4.5.2 基于Boltzmann子个体选择 103

4.5.3 算法实现 104

4.5.4 仿真实验与分析 105

4.5.5 结论 109

4.6 本章小结 109

参考文献 109

第5章 群体智能算法的应用 110

5.1 物流配送中的车辆调度问题 110

5.1.1 问题的提出 110

5.1.2 组合优化 111

5.1.3 车辆调度问题的数学模型 111

5.1.4 求解VRP的混合人工鱼群遗传算法 112

5.1.5 仿真实验结果 113

5.2 求解SVM反问题的差异演化算法 113

5.2.1 问题的提出 113

5.2.2 差异演化算法的设计 114

5.2.3 差异演化算法的改进 114

5.2.4 仿真实验结果 116

5.3 求解聚类问题的人工鱼群算法 118

5.3.1 聚类模型 118

5.3.2 算法的设计 119

5.3.3 算法实现 120

5.3.4 仿真实验结果 121

5.4 求解测试用例自动化问题的人工鱼群算法 123

5.4.1 路径测试模型 123

5.4.2 混沌搜索 125

5.4.3 算法的设计 125

5.4.4 仿真实验结果 127

5.5 求解关联规则挖掘的差异演化算法 129

5.5.1 规则挖掘 129

5.5.2 算法的设计 131

5.5.3 仿真实验结果 133

5.6 求解特征选择的人工鱼群算法 136

5.6.1 特征选择 136

5.6.2 算法的设计 136

5.6.3 仿真实验结果 137

5.7 求解网络安全态势预测的人工鱼群算法 139

5.7.1 网络安全态势预测模型 140

5.7.2 算法的设计 141

5.7.3 仿真实验结果 143

5.8 求解图像边缘检测的遗传算法 146

5.8.1 数字图像边缘 146

5.8.2 Sobel边缘检测算子 148

5.8.3 面向图像边缘检测的遗传算法 149

5.8.4 仿真实验结果 151

5.8.5 结论 155

5.9 本章小结 155

参考文献 157

第6章 总结与展望 159

精品推荐