图书介绍

医用多元统计分析方法 第2版pdf电子书版本下载

医用多元统计分析方法  第2版
  • 陈峰编著 著
  • 出版社: 北京:中国统计出版社
  • ISBN:9787503739828
  • 出版时间:2007
  • 标注页数:294页
  • 文件大小:14MB
  • 文件页数:309页
  • 主题词:医学统计-多元分析-方法-研究生-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

医用多元统计分析方法 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 多元正态分布 1

1.1 多元分析常用统计量 1

1.1.1 均向量 2

1.1.2 方差、协方差矩阵 2

1.1.3 离均差平方和与离均差积和矩阵 2

1.1.4 相关系数矩阵 3

1.2 多元正态分布 3

1.2.1 定义 3

1.2.2 性质 4

1.3 二元正态相关变量的参考值范围 6

2 均向量的统计推断 9

2.1 多元T检验 9

2.1.1 多元配对设计的均向量检验 9

2.1.2 多元成组设计两样本的均向量检验 11

2.2 多元方差分析 12

2.2.1 多元成组设计资料的分析 12

2.2.2 多元区组设计资料的分析 15

2.2.3 多元析因设计资料的分析 16

2.3 协方差阵的检验 19

2.3.1 V=V0的检验 19

2.3.2 V=σ2V0的检验 20

2.3.3 V1=V2=…=Vg的检验 20

2.4 多元方差分析的正确应用 21

3 多重线性回归 22

3.1 多重线性回归模型简介 22

3.2 回归系数的估计 23

3.2.1 矩阵计算法 24

3.2.2 消去变换法 25

3.3 方程的假设检验 27

3.3.1 y方面变异的分解 27

3.3.2 回归方程的方差分析 28

3.4 决定系数与剩余标准差 28

3.5 偏回归系数的假设检验与区间估计 29

3.6 标准偏回归系数与自变量的贡献 30

3.6.1 标准偏回归系数 30

3.6.2 自变量作用的分解 30

3.6.3 复相关系数的分解 31

3.7 因变量的区间估计 31

3.7.1 y的可信区间估计 31

3.7.2 y的容许区间估计 32

3.8 指标的量化 32

3.9 衡量回归方程的标准 33

3.9.1 复相关系数R 33

3.9.2 校正复相关系数Radj 34

3.9.3 剩余标准差 34

3.9.4 赤池信息准则 34

3.9.5 Cp统计量(Cpstatistic) 34

3.10 逐步回归 36

3.11 回归系数反常的原因 44

3.12 岭回归 46

3.13 回归分析的正确应用 48

4 主成分分析 50

4.1 主成分的定义 50

4.2 主成分的计算 52

4.3 主成分的性质 54

4.4 主成分的应用 56

4.4.1 主成分评价 56

4.4.2 主成分回归 60

4.5 有关的统计推断 61

4.5.1 特征根的可信区间估计 62

4.5.2 等相关性检验 62

4.5.3 主成分相等的检验 63

4.6 主成分分析的正确应用 63

5 因子分析 65

5.1 因子模型 65

5.2 因子模型的估计 68

5.2.1 主成分法 68

5.2.2 极大似然法 69

5.2.3 主因子法 70

5.2.4 迭代主因子法 72

5.2.5 残差矩阵 72

5.3 因子旋转 74

5.3.1 方差最大正交旋转 74

5.3.2 斜交旋转 75

5.4 因子得分 77

5.5 因子分析的策略 78

5.6 因子分析的正确应用 81

6 logistic族回归 83

6.1 多重logistic回归模型 83

6.1.1 多重logistic回归模型 83

6.1.2 系数的解释 84

6.1.3 变量的假设检验 87

6.1.4 建模策略 89

6.1.5 四格表资料的logistic回归 95

6.2 配比设计的条件logistic回归 96

6.2.1 条件logistic回归模型 96

6.2.2 配对四格表资料的条件logistic回归 99

6.3 多类结果变量的logistic回归 101

6.3.1 多类结果变量的logistic回归模型 101

6.3.2 系数的解释与检验 102

6.3.3 建模策略 104

6.4 有序结果的累积优势logistic回归 105

6.4.1 累积优势logistic回归模型 105

6.4.2 累积优势模型的应用条件 107

6.5 有序结果的相邻优势logistic回归模型 109

6.5.1 相邻优势logistic回归模型 110

6.6 logistic族回归模型的正确应用 111

7 广义线性模型 114

7.1 线性模型与广义线性模型 114

7.1.1 线性模型 114

7.1.2 广义线性模型 115

7.1.3 指数分布族 116

7.1.4 联接函数 117

7.2 广义线性模型的建立 118

7.2.1 GLM的参数估计 118

7.2.2 GLM的假设检验 120

7.2.3 拟合优度 121

7.2.4 残差分析 122

7.3 logistic回归与Probit回归 123

7.4 Poisson回归 125

7.5 负二项回归 128

7.6 广义线性模型的正确应用 130

8 生存分析 132

8.1 随访研究的特点 132

8.1.1 截尾数据 133

8.1.2 几个基本概念 134

8.1.3 随访资料的特点 134

8.2 生存分析的理论体系与常用指标 136

8.3 指数模型 139

8.3.1 指数分布模型 139

8.3.2 指数分布模型的参数估计 140

8.3.3 两个指数分布模型的比较 140

8.3.4 指数回归模型 142

8.4 Weibull模型 146

8.4.1 Weibull分布模型 146

8.4.2 Weibull分布模型的参数估计 147

8.4.3 Weibull回归模型 148

8.4.4 Weibull回归与指数回归的比较 149

8.5 Cox比例风险模型 155

8.6 生存分析的正确应用 157

9 聚类分析 160

9.1 聚类的目的与方法 160

9.2 距离和相似系数 161

9.2.1 距离 161

9.2.2 相似系数 163

9.2.3 列联系数 164

9.3 系统聚类法 165

9.3.1 最短距离法 166

9.3.2 最长距离法 168

9.3.3 中间距离法 170

9.3.4 可变距离法 170

9.3.5 重心法 170

9.3.6 类平均法 171

9.3.7 可变类平均法 171

9.3.8 Ward最小方差法 171

9.3.9 八种系统聚类方法的统一 172

9.4 动态聚类 176

9.5 有序样品的聚类 180

9.6 条件系统聚类 188

9.7 聚类分析的正确应用 191

10 判别分析 193

10.1 距离判别 193

10.1.1 两个总体的距离判别 193

10.1.2 多个总体的距离判别 200

10.2 Bayes判别 203

10.3 Fisher判别 205

10.4 逐步判别 208

10.4.1 基本思想 208

10.4.2 计算步骤 208

10.5 Bayes公式法和极大似然法 216

10.5.1 Bayes公式法 217

10.5.2 极大似然法及其简便算法 220

10.6 判别分析的正确应用 221

附录A 极大似然方法 224

附录B 习题 232

附录C 习题参考答案 251

附录D 部分例题SAS程序 274

参考文献 293

精品推荐