图书介绍

PARTIAL DIFFERENTIAL EQUATIONS AN INTRODUCTIONpdf电子书版本下载

PARTIAL DIFFERENTIAL EQUATIONS AN INTRODUCTION
  • BERNARD EPSTEIN 著
  • 出版社: INC.
  • ISBN:
  • 出版时间:1962
  • 标注页数:273页
  • 文件大小:12MB
  • 文件页数:282页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

PARTIAL DIFFERENTIAL EQUATIONS AN INTRODUCTIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1.Some Preliminary Topics 1

1.Equicontinuous Families of Functions 1

2.The Weierstrass Approximation Theorem 4

3.The Fourier Integral 9

4.The Laplace Transform 13

5.Ordinary Differential Equations 17

6.Lebesgue Integration 25

7.Dini's Theorem 27

CHAPTER 2.Partial Differential Equations of First Order 28

1.Linear Equations in Two Independent Variables 28

2.Quasi-linear Equations 33

3.The General First-order Equation 36

CHAPTER 3.The Cauchy Problem 42

1.Classification of Equations with Linear Principal Parts 42

2.Characteristics 44

3.Canonical Forms 46

4.The Cauchy Problem for Hyperbolic Equations 48

5.The One-dimensional Wave Equation 53

6.The Riamann Function 55

7.Classification of Second-order Equations in Three or More Independent Variables 58

8.The Wave Equation in Two and Three Dimensions 60

9.The Legendre Transformation 65

CHAPTER 4.The Fredholm Alternative in Banach Spaces 69

1.Linear Spaces 69

2.Normed Linear Spaces 71

3.Banach Spaces 74

4.Linear Functionals and Linear Operators 76

5.The Fredholm Alternative 82

CHAPTER 5.The Fredholm Alternative Hilbert Spaces 90

1.Inner-product Spaces 90

2.Hilbert Spaces 95

3.Projections,Linear Functionals,Adjoint Operators 99

4.Hermitian and Completely Continuous Operators 104

5.The Fredholm Alternative 111

6.Integral Equations 118

7.Hermitian Kernels 121

8.Illustrative Example 127

CHAPTER 6.Elements of Potential Theory 130

1.Introduction 130

2.Laplace's Equation and Theory of Analytic Functions 131

3.Fundamental Solutions 133

4.The Mean-value Theorem 135

5.The Maximum Principle 136

6.Formulation of the Dirichlet Problem 138

7.Solution of the Dirichlet Problem for the Disc 139

8.The Converse of the Mean-value Theorem 146

9.Convergence Theorems 149

10.Strengthened Form of the Maximum Principle 152

11.Single and Double Layers 152

12.Poisson's Equation 157

CHAPTER 7.The Dirichlet Problem 167

1.Subharmonic Functions 167

2.The Method of Balayage 170

3.The Perron-Remak Method 176

4.The Method of Integral Equations 179

5.The Dirichlet Principle 183

6.The Method of Finite Differences 199

7.Conformal Mapping 211

CHAPTER 8.The Heat Equation 217

1.The Initial-value Problem for the Infinite Rod 217

2.The Simplest Problem for the Semi-infinite Rod 221

3.The Finite Rod 256

CHAPTER 9.Green's Functions and Separation of Variables 232

1.The Vibrating String 232

2.The Green's Function of the Operator d2/dx2 235

3.The Green's Function of a Second-order Differential Operator 237

4.Eigenfunction Expansions 239

5.A Generalized Wave Equation 241

6.Extension of the Definition of Green's Functions 243

SOLUTIONS TO SELECTED EXERCISES 253

SUGGESTIONS FOR FURTHER STUDY 267

INDEX 269

精品推荐