图书介绍

工厂物理学 制造企业管理基础pdf电子书版本下载

工厂物理学  制造企业管理基础
  • (美)WallaceJ.Hopp,(美)MarkL.Spearman著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:730205973X
  • 出版时间:2002
  • 标注页数:698页
  • 文件大小:38MB
  • 文件页数:757页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

工厂物理学 制造企业管理基础PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Factory Physics? 1

0.1 The Short Answer 1

0.2 The Long Answer 1

0.2.1 Focus: Manufacturing Management 1

0.2.2 Scope: Operations 3

0.2.3 Method: Factory Physics 6

0.2.4 Perspective: Flow Lines 8

0.3 An Overview of the Book 10

PART Ⅰ THE LESSONS OF HISTORY 14

1 Manufacturing in America 14

1.1 Introduction 14

1.2 The American Experience 15

1.3 The First Industrial Revolution 17

1.3.1 The Industrial Revolution in America 18

1.3.2 The American System of Manufacturing 19

1.4 The Second Industrial Revolution 20

1.4.1 The Role of the Railroads 21

1.4.2 Mass Retailers 22

1.4.3 Andrew Carnegie and Scale 23

1.4.4 Henry Ford and Speed 24

1.5 Scientific Management 25

1.5.1 Frederick W. Taylor 27

1.5.2 Planning versus Doing 29

1.5.3 Other Pioneers of Scientific Management 31

1.5.4 The Science of Scientific Management 32

1.6 The Rise of the Modem Manufacturing Organization 32

1.6.1 Du Pont, Sloan, and Structure 33

1.6.2 Hawthorne and the Human Element 34

1.6.3 Management Education 36

1.7 Peak, Decline, and Resurgence of American Manufacturing 37

1.7.1 The Golden Era 37

1.7.2 Accountants Count and Salesmen Sell 38

1.7.3 The Professional Manager 40

1.7.4 Recovery and Globalization of Manufacturing 42

1.8 The Future 43

Discussion Points 45

Study Questions 46

2 Inventory Control: From EOQ to ROP 48

2.1 Introduction 48

2.2.2 The Model 49

2.2.1 Motivation 49

2.2 The Economic Order Quantity Model 49

2.2.3 The Key Insight of EOQ 52

2.2.4 Sensitivity 54

2.2.5 EOQ Extensions 56

2.3 Dynamic Lot Sizing 56

2.3.1 Motivation 57

2.3.2 Problem Formulation 57

2.3.3 The Wagner-Whitin Procedure 59

2.3.4 Interpreting the Solution 62

2.3.5 Caveats 63

2.4 Statistical Inventory Models 64

2.4.1 The News Vendor Model 65

2.4.2 The Base Stock Model 69

2.4.3 The (Q,r) Model 75

2.5 Conclusions 88

Appendix2A Basic Probability 89

Appendix2B Inventory Formulas 100

Study Questions 103

Problems 104

3 The MRP Crusade 109

3.1 Material Requirements Planning—MRP 109

3.1.1 The Key Insight of MRP 109

3.1.2 Overview of MRP 110

3.1.3 MRP Inputs and Outputs 114

3.1.4 The MRP Procedure 116

3.1.5 Special Topics in MRP 122

3.1.6 Lot Sizing in MRP 124

3.1.7 Safety Stock and Safety Lead Times 128

3.1.8 Accommodating Yield Losses 130

3.1.9 Problems in MRP 131

3.2 Manufacturing Resources Planning—MRP Ⅱ 135

3.2.1 The MRP Ⅱ Hierarchy 136

3.2.2 Long-Range Planning 136

3.2.3 Intermediate Planning 137

3.2.4 Short-Term Control 141

3.3 Beyond MRP Ⅱ—Enterprise Resources Planning 143

3.3.1 History and Success of ERP 143

3.3.2 An Example: SAP R/3 144

3.3.4 Advanced Planning Systems 145

3.4 Conclusions 145

3.3.3 Manufacturing Execution Systems 145

Study Questions 146

Problems 147

4 The JIT Revolution 151

4.1 The Origins of JIT 151

4.2 JIT Goals 153

4.3 The Environment as a Control 154

4.4 Implementing JIT 155

4.4.1 Production Smoothing 156

4.4.2 Capacity Buffers 157

4.4.3 Setup Reduction 158

4.4.4 Cross-Training and Plant Layout 159

4.4.5 Total Quality Management 160

4.5 Kanban 162

4.6 The Lessons of JIT 165

Discussion Point 166

Study Questions 166

What Went Wrong 168

5.1 Introduction 168

5.2 Trouble with Scientific Management 169

5.3 Trouble with MRP 173

5.4 Trouble with JIT 176

5.5 Where from Here? 181

Discussion Points 183

Study Questions 183

PART Ⅱ FACTORY PHYSICS 186

6 A Science of Manufacturing 186

6.1 The Seeds of Science 186

6.1.1 Why Science? 187

6.1.3 Prescriptive and Descriptive Models 190

6.1.2 Defining a Manufacturing System 190

6.2 Objectives, Measures, and Controls 192

6.2.1 The Systems Approach 192

6.2.2 The Fundamental Objective 195

6.2.3 Hierarchical Objectives 195

6.2.4 Control and Information Systems 197

6.3 Models and Performance Measures 198

6.3.1 The Danger of Simple Models 198

6.3.2 Building Better Prescriptive Models 199

6.3.3 Accounting Models 200

6.3.4 Tactical and Strategic Modeling 204

6.3.5 Considering Risk 205

Appendix 6A Activity-Based Costing 208

6.4 Conclusions 208

Study Questions 209

Problems 210

7 Basic Factory Dynamics 213

7.1 Introduction 213

7.2 Definitions and Parameters 215

7.2.1 Definitions 215

7.2.2 Parameters 218

7.2.3 Examples 219

7.3 Simple Relationships 221

7.3.1 Best-Case Performance 221

7.3.2 Worst-Case Performance 226

7.3.3 Practical Worst-Case Performance 229

7.3.4 Bottleneck Rates and Cycle Time 233

7.3.5 Internal Benchmarking 235

7.4 Labor-Constrained Systems 238

7.4.1 Ample Capacity Case 238

7.4.2 Full Flexibility Case 239

7.4.3 CONWIP Lines with Flexible Labor 240

7.5 Conclusions 242

Study Questions 243

Problems 244

Intuition-Building Exercises 246

8 Variability Basics 248

8.1 Introduction 248

8.2 Variability and Randomness 249

8.2.1 The Roots of Randomness 249

8.2.2 Probabilistic Intuition 250

8.3 Process Time Variability 251

8.3.1 Measures and Classes of Variability 252

8.3.2 Low and Moderate Variability 252

8.3.3 Highly Variable Process Times 254

8.4 Causes of Variability 255

8.4.1 Natural Variability 255

8.4.2 Variability from Preemptive Outages (Breakdowns) 255

8.4.3 Variability from Nonpreemptive Outages 258

8.4.4 Variability from Recycle 260

8.4.5 Summary of Variability Formulas 260

8.5 Flow Variability 261

8.5.1 Characterizing Variability in Flows 261

8.6 Variability Interactions—Queueing 264

8.5.2 Batch Arrivals and Departures 264

8.6.1 Queueing Notation and Measures 265

8.6.2 Fundamental Relations 266

8.6.3 The M/M/1 Queue 267

8.6.4 Performance Measures 269

8.6.5 Systems with General Process and Interarrival Times 270

8.6.6 Parallel Machines 271

8.6.7 Parallel Machines and General Times 273

8.7 Effects of Blocking 273

8.7.1 The M/M/1/b Queue 273

8.7.2 General Blocking Models 277

8.8 Variability Pooling 279

8.8.1 Batch Processing 280

8.8.2 Safety Stock Aggregation 280

8.8.3 Queue Sharing 281

8.9 Conclusions 282

Study Questions 283

Problems 283

9 The Corrupting Influence of Variability 287

9.1 Introduction 287

9.1.1 Can Variability Be Good? 287

9.1.2 Examples of Good and Bad Variability 288

9.2 Performance and Variability 289

9.2.1 Measures of Manufacturing Performance 289

9.2.2 Variability Laws 294

9.2.3 Buffering Examples 295

9.2.4 Pay Me Now or Pay Me Later 297

9.2.6 Organizational Learning 300

9.2.5 Flexibility 300

9.3 Flow Laws 301

9.3.1 Product Flows 301

9.3.2 Capacity 301

9.3.3 Utilization 303

9.3.4 Variability and Flow 304

9.4 Batching Laws 305

9.4.1 Types of Batches 305

9.4.2 Process Batching 306

9.4.3 Move Batching 311

9.5 Cycle Time 314

9.5.1 Cycle Time at a Single Station 315

9.5.2 Assembly Operations 315

9.5.3 Line Cycle Time 316

9.5.4 Cycle Time, Lead Time, and Service 321

9.6 Diagnostics and Improvement 324

9.6.1 Increasing Throughput 324

9.6.2 Reducing Cycle Time 327

9.6.3 Improving Customer Service 330

9.7 Conclusions 331

Study Questions 333

Intuition-Building Exercises 333

Problems 335

10 Push and Pull Production Systems 339

10.1 Introduction 339

10.2 Definitions 339

10.2.1 The Key Difference between Push and Pull 340

10.2.2 The Push-PuU Interface 341

10.3 The Magic of Pull 344

10.3.1 Reducing Manufacturing Costs 345

10.3.2 Reducing Variability 346

10.3.3 Improving Quality 347

10.3.4 Maintaining Flexibility 348

10.3.5 Facilitating Work Ahead 349

10.4 CONWIP 349

10.4.1 Basic Mechanics 349

10.4.2 Mean-Value Analysis Model 350

10.5 Comparisons of CONWIP with MRP 354

10.5.2 Efficiency 355

10.5.1 Observability 355

10.5.3 Variability 356

10.5.4 Robustness 357

10.6 Comparisons of CONWIP with Kanban 359

10.6.1 Card Count Issues 359

10.6.2 Product Mix Issues 360

10.6.3 People Issues 361

10.7 Conclusions 362

Study Questions 363

Problems 363

11 The Human Element in Operations Management 365

11.1 Introduction 365

11.2 Basic Human Laws 366

11.2.1 The Foundation of Self-interest 366

11.2.2 The Fact of Diversity 368

11.2.3 The Power of Zealotry 371

11.2.4 The Reality of Burnout 373

11.3 Planning versus Motivating 374

11.4 Responsibility and Authority 375

11.5 Summary 377

Discussion Points 378

Study Questions 379

12 Total Quality Manufacturing 380

12.1 Introduction 380

12.1.1 The Decade of Quality 380

12.1.2 A Quality Anecdote 381

12.1.3 The Status of Quality 382

12.2.2 Internal versus External Quality 383

12.2 Views of Quality 383

12.2.1 General Definitions 383

12.3 Statistical Quality Control 385

12.3.1 SQC Approaches 385

12.3.2 Statistical Process Control 385

12.3.3 SPC Extensions 388

12.4 Quality and Operations 389

12.4.1 Quality Supports Operations 390

12.4.2 Operations Supports Quality 396

12.5 Quality and the Supply Chain 398

12.5.1 A Safety Lead Time Example 399

12.5.2 Purchased Parts in an Assembly System 399

12.5.3 Vendor Selection and Management 401

Study Questions 402

12.6 Conclusions 402

Problems 403

PART Ⅲ PRINCIPLES IN PRACTICE 408

13 A Pull Planning Framework 408

13.1 Introduction 408

13.2 Disaggregation 409

13.2.1 Time Scales in Production Planning 409

13.2.2 Other Dimensions of Disaggregation 411

13.2.3 Coordination 413

13.3 Forecasting 414

13.3.1 Causal Forecasting 415

13.3.2 Time Series Forecasting 418

13.3.3 The Art of Forecasting 429

13.4 Planning for Pull 430

13.5 Hierarchical Production Planning 432

13.5.1 Capacity/Facility Planning 434

13.5.2 Workforce Planning 436

13.5.3 Aggregate Planning 438

13.5.4 WIP and Quota Setting 439

13.5.5 Demand Management 441

13.5.6 Sequencing and Scheduling 442

13.5.7 Shop Floor Control 443

13.5.8 Real-Time Simulation 443

13.5.9 Production Tracking 444

13.6 Conclusions 444

Appendix13A A Quota-Setting Model 445

Study Questions 447

Problems 448

14 Shop Floor Control 453

14.1 Introduction 453

14.2 General Considerations 456

14.2.1 Gross Capacity Control 456

14.2.2 Bottleneck Planning 458

14.2.3 Span of Control 460

14.3 CONWIP Configurations 461

14.3.1 Basic CONWIP 461

14.3.2 Tandem CONWIP Lines 464

14.3.3 Shared Resources 465

14.3.4 Multiple-Product Families 467

14.3.5 CONWIP Assembly Lines 468

14.4 Other Pull Mechanisms 469

14.4.1 Kanban 470

14.4.2 Pull-from-the-Bottleneck Methods 471

14.4.3 Shop Floor Control and Scheduling 474

14.5 Production Tracking 475

14.5.1 Statistical Throughput Control 475

14.5.2 Long-Range Capacity Tracking 478

14.6 Conclusions 482

Appendix14AStatistical Throughput Control 483

Study Questions 484

Problems 485

15 Production Scheduling 488

15.1 Goals of Production Scheduling 488

15.1.1 Meeting Due Dates 488

15.1.2 Maximizing Utilization 489

15.1.3 Reducing WIP and Cycle Times 490

15.2 Review of Scheduling Research 491

15.2.1 MRP, MRP Ⅱ, and ERP 491

15.2.2 Classic Scheduling 491

15.2.3 Dispatching 493

15.2.4 Why Scheduling Is Hard 493

15.2.5 Good News and Bad News 497

15.2.6 Practical Finite-Capacity Scheduling 498

15.3 Linking Planning and Scheduling 501

15.3.1 Optimal Batching 502

15.3.2 Due Date Quoting 510

15.4 Bottleneck Scheduling 513

15.4.1 CONWIP Lines Without Setups 513

15.4.2 Single CONWIP Lines with Setups 514

15.4.3 Bottleneck Scheduling Results 518

15.5 Diagnostic Scheduling 518

15.5.1 Types of Schedule Infeasibility 519

15.5.2 Capacitated Material Requirements Planning—MRP-C 522

15.5.3 Extending MRP-C to More General Environments 528

15.5.4 Practical Issues 528

15.6 Production Scheduling in a Pull Environment 529

15.6.1 Schedule Planning, Pull Execution 529

15.6.2 Using CONWIP with MRP 530

15.7 Conclusions 530

Study Questions 531

Problems 531

16.1 Introduction 535

16 Aggregate and Workforce Planning 535

16.2 Basic Aggregate Planning 536

16.2.1 A Simple Model 536

16.2.2 An LP Example 538

16.3 Product Mix Planning 546

16.3.1 Basic Model 546

16.3.2 A Simple Example 548

16.3.3 Extensions to the Basic Model 552

16.4 Workforce Planning 557

16.4.1 An LP Model 557

16.4.2 A Combined AP/WP Example 559

16.4.3 Modeling Insights 568

16.5 Conclusions 568

Appendix16A Linear Programming 569

Study Questions 575

Problems 575

17 Supply Chain Management 582

17.1 Introduction 582

17.2 Reasons for Holding Inventory 583

17.2.1 Raw Materials 583

17.2.2 Work in Process 583

17.2.3 Finished Goods Inventory 585

17.2.4 Spare Parts 586

17.3 Managing Raw Materials 586

17.3.1 Visibility Improvements 587

17.3.2 ABC Classification 587

17.3.3 Just-in-Time 588

17.3.5 Setting Order Frequencies for Purchased Components 589

17.3.4 Setting Safety Stock/Lead Times for Purchased Components 589

17.4 Managing WIP 595

17.4.1 Reducing Queueing 596

17.4.2 Reducing Wait-for-Batch WIP 597

17.4.3 Reducing Wait-to-Match WIP 599

17.5 Managing FGI 600

17.6 Managing Spare Parts 601

17.6.1 Stratifying Demand 602

17.6.2 Stocking Spare Parts for Emergency Repairs 602

17.7 Multiechelon Supply Chains 610

17.7.1 System Configurations 610

17.7.2 Performance Measures 612

17.7.3 The Bullwhip Effect 612

17.7.4 An Approximation for a Two-Level System 616

17.8 Conclusions 621

Discussion Point 622

Study Questions 623

Problems 623

18 Capacity Management 626

18.1 The Capacity-Setting Problem 626

18.1.1 Short-Term and Long-Term Capacity Setting 626

18.1.2 Strategic Capacity Planning 627

18.1.3 Traditional and Modern Views of Capacity Management 629

18.2 Modeling and Analysis 631

18.2.1 Example: A Minimum Cost, Capacity-Feasible Line 633

18.2.2 Forcing Cycle Time Compliance 634

18.3 Modifying Existing Production Lines 636

18.4.1 The Traditional Approach 637

18.4 Designing New Production Lines 637

18.4.2 A Factory Physics Approach 638

18.4.3 Other Facility Design Considerations 639

18.5 Capacity Allocation and Line Balancing 639

18.5.1 Paced Assembly Lines 640

18.5.2 Unbalancing Flow Lines 640

18.6 Conclusions 641

Appendix18A The Line-of-Balance Problem 642

Study Questions 645

Problems 645

19 Synthesis-Pulling It All Together 647

19.1 The Strategic Importance of Details 647

19.2 The Practical Matter of Implementation 648

19.2.1 A Systems Perspective 648

19.2.2 Initiating Change 649

19.3 Focusing Teamwork 650

19.3.1 Pareto s Law 651

19.3.2 Factory Physics Laws 651

19.4 A Factory Physics Parable 654

19.4.1 Hitting the Trail 654

19.4.2 The Challenge 657

19.4.3 The Lay of the Land 657

19.4.4 Teamwork to the Rescue 660

19.4.5 How the Plant Was Won 666

19.4.6 Epilogue 668

19.5 The Future 668

References 672

Index 683

精品推荐