图书介绍

概率论基础教程 英文版 第8版pdf电子书版本下载

概率论基础教程  英文版  第8版
  • (美)Sheldon M. Ross著 著
  • 出版社: 2009
  • ISBN:9787115209542
  • 出版时间:8
  • 标注页数:530页
  • 文件大小:22MB
  • 文件页数:544页
  • 主题词:概率论-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

概率论基础教程 英文版 第8版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Combinatorial Analysis 1

1.1 Introduction 1

1.2 The Basic Principle of Counting 1

1.3 Permutations 3

1.4 Combinations 5

1.5 Multinomial Coefficients 9

1.6 The Number of Integer Solutions of Equations 12

Summary 15

Problems 16

Theoretical Exercises 18

Self-Test Problems and Exercises 20

2 Axioms of Probability 22

2.1 Introduction 22

2.2 Sample Space and Events 22

2.3 Axioms of Probability 26

2.4 Some Simple Propositions 29

2.5 Sample Spaces Having Equally Likely Outcomes 33

2.6 Probability as a Continuous Set Function 44

2.7 Probability as a Measure of Belief 48

Summary 49

Problems 50

Theoretical Exercises 54

Self-Test Problems and Exercises 56

3 Conditional Probability and Independence 58

3.1 Introduction 58

3.2 Conditional Probabilities 58

3.3 Bayes’s Formula 65

3.4 Independent Events 79

3.5 P(.|F) Is a Probability 93

Summary 101

Problems 102

Theoretical Exercises 110

Self-Test Problems and Exercises 114

4 Random Variables 117

4.1 Random Variables 117

4.2 Discrete Random Variables 123

4.3 Expected Value 125

4.4 Expectation of a Function of a Random Variable 128

4.5 Variance 132

4.6 The Bernoulli and Binomial Random Variables 134

4.6.1 Properties of Binomial Random Variables 139

4.6.2 Computing the Binomial Distribution Function 142

4.7 The Poisson Random Variable 143

4.7.1 Computing the Poisson Distribution Function 154

4.8 Other Discrete Probability Distributions 155

4.8.1 The Geometric Random Variable 155

4.8.2 The Negative Binomial Random Variable 157

4.8.3 The Hypergeometric Random Variable 160

4.8.4 The Zeta (or Zipf) Distribution 163

4.9 Expected Value of Sums of Random Variables 164

4.10 Properties of the Cumulative Distribution Function 168

Summary 170

Problems 172

Theoretical Exercises 179

Self-Test Problems and Exercises 183

5 Continuous Random Variables 186

5.1 Introduction 186

5.2 Expectation and Variance of Continuous Random Variables 190

5.3 The Uniform Random Variable 194

5.4 Normal Random Variables 198

5.4.1 The Normal Approximation to the Binomial Distribution 204

5.5 Exponential Random Variables 208

5.5.1 Hazard Rate Functions 212

5.6 Other Continuous Distributions 215

5.6.1 The Gamma Distribution 215

5.6.2 The Weibull Distribution 216

5.6.3 The Cauchy Distribution 217

5.6.4 The Beta Distribution 218

5.7 The Distribution of a Function of a Random Variable 219

Summary 222

Problems 224

Theoretical Exercises 227

Self-Test Problems and Exercises 229

6 Jointly Distributed Random Variables 232

6.1 Joint Distribution Functions 232

6.2 Independent Random Variables 240

6.3 Sums of Independent Random Variables 252

6.3.1 Identically Distributed Uniform Random Variables 252

6.3.2 Gamma Random Variables 254

6.3.3 Normal Random Variables 256

6.3.4 Poisson and Binomial Random Variables 259

6.3.5 Geometric Random Variables 260

6.4 Conditional Distributions:Discrete Case 263

6.5 Conditional Distributions:Continuous Case 266

6.6 Order Statistics 270

6.7 Joint Probability Distribution of Functions of Random Variables 274

6.8 Exchangeable Random Variables 282

Summary 285

Problems 287

Theoretical Exercises 291

Self-Test Problems and Exercises 293

7 Properties of Expectation 297

7.1 Introduction 297

7.2 Expectation of Sums of Random Variables 298

7.2.1 Obtaining Bounds from Expectations via the Probabilistic Method 311

7.2.2 The Maximum-Minimums Identity 313

7.3 Moments of the Number of Events that Occur 315

7.4 Covariance,Variance of Sums,and Correlations 322

7.5 Conditional Expectation 331

7.5.1 Definitions 331

7.5.2 Computing Expectations by Conditioning 333

7.5.3 Computing Probabilities by Conditioning 344

7.5.4 Conditional Variance 347

7.6 Conditional Expectation and Prediction 349

7.7 Moment Generating Functions 354

7.7.1 Joint Moment Generating Functions 363

7.8 Additional Properties of Normal Random Variables 365

7.8.1 The Multivariate Normal Distribution 365

7.8.2 The Joint Distribution of the Sample Mean and Sample Variance 367

7.9 General Definition of Expectation 369

Summary 370

Problems 373

Theoretical Exercises 380

Self-Test Problems and Exercises 384

8 Limit Theorems 388

8.1 Introduction 388

8.2 Chebyshev’s Inequality and the Weak Law of Large Numbers 388

8.3 The Central Limit Theorem 391

8.4 The Strong Law of Large Numbers 400

8.5 Other Inequalities 403

8.6 Bounding the Error Probability When Approximating a Sum of Independent Bernoulli Random Variables by a Poisson Random Variable 410

Summary 412

Problems 412

Theoretical Exercises 414

Self-Test Problems and Exercises 415

9 Additional Topics in Probability 417

9.1 The Poisson Process 417

9.2 Markov Chains 419

9.3 Surprise,Uncertainty,and Entropy 425

9.4 Coding Theory and Entropy 428

Summary 434

Problems and Theoretical Exercises 435

Self-Test Problems and Exercises 436

References 436

10 Simulation 438

10.1 Introduction 438

10.2 General Techniques for Simulating Continuous Random Variables 440

10.2.1 The Inverse Transformation Method 441

10.2.2 The Rejection Method 442

10.3 Simulating from Discrete Distributions 447

10.4 Variance Reduction Techniques 449

10.4.1 Use of Antithetic Variables 450

10.4.2 Variance Reduction by Conditioning 451

10.4.3 Control Variates 452

Summary 453

Problems 453

Self-Test Problems and Exercises 455

Reference 455

Answers to Selected Problems 457

Solutions to Self-Test Problems and Exercises 461

Index 521

精品推荐