图书介绍

complex analysispdf电子书版本下载

complex analysis
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:14MB
  • 文件页数:330页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

complex analysisPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART ONE BASIC THEORY 3

Chapter Ⅰ Complex Numbers and Functions 3

1 Definition 3

2 Polar form 8

3 Complex valued functions 12

4 Limits and compact sets 17

5 Complex differentiability 27

6 The Cauchy-Riemann equations 31

Chapter Ⅱ Power Series 35

1 Formal power series 35

2 Convergent power series 45

3 Relations between formal and convergent series 57

Sums and products 57

Quotients 60

Composition of series 62

4 Holomorphic functions 64

5 The inverse and open mapping theorems 67

6 The local maximum modulus principle 73

7 Differentiation of power series 75

Chapter Ⅲ Cauchy’s Theorem, First Part 81

1 Analytic functions on connected sets 81

2 Integrals over paths 88

3 Local primitive for an analytic function 96

4 Another description of the integral along a path 102

5 The homotopy form of Cauchy’s theorem 106

6 Existence of global primitives.Definition of the logarithm 108

Chapter Ⅳ Cauchy’s Theorem, Second Part 113

1 The winding number 113

2 Statement of Cauchy’s theorem 117

3 Artin’s proof 125

Chapter Ⅴ Applications of Cauchy’s Integral Formula 133

1 Cauchy’s integral formula on a disc 133

2 Laurent series 139

3 Isolated singularities 143

4 Dixon’s proof of Cauchy’s theorem 148

Chapter Ⅵ Calculus of Residues 151

1 The residue formula 151

2 Evaluation of definite integrals 167

Fourier transforms, 169

Trigonometric integrals 172

Mellin transforms 174

Chapter Ⅶ Conformal Mappings 184

1 Schwarz lemma 184

2 Analytic automorphisms of the disc 185

3 The upper half plane 189

4 Other examples 190

Chapter Ⅷ Harmonic Functions 197

1 Definition 197

2 Examples 205

3 Construction of harmonic functions 212

4 Existence of associated analytic function 216

PART TWO VARIOUS ANALYTIC TOPICS 221

Chapter Ⅸ Applications of the Maximum Modulus Principle 221

1 The effect of zeros, Jensen-Schwarz lemma 221

2 The effect of small derivatives 226

3 Entire functions with rational values 228

4 Phragmen-Lindelof and Hadamard theorems 234

5 Bounds by the real part, Borel-Caratheodory theorem 238

Chapter Ⅹ Entire and Meromorphic Functions 241

1 Infinite products 241

2 Weierstrass products 244

3 Functions of finite order 250

4 Meromorphic functions, Mittag-Leffler theorem 252

Chapter Ⅺ Elliptic Functions 255

1 The Liouville theorems 255

2 The Weierstrass function 258

3 The addition theorem 262

4 The sigma and zeta functions 265

Chapter Ⅻ Differentiating Under an Integral 270

1 The differentiation lemma 270

2 The gamma function 273

Proof of Stirling’s formula 277

Chapter ⅩⅢ Analytic Continuation 287

1 Schwarz reflection 287

2 Continuation along a path 292

Chapter ⅩⅣ The Riemann Mapping Theorem 299

1 Statement and application to Picard’s theorem 299

2 Compact sets in function spaces 303

3 Proof of the Riemann mapping theorem 306

4 Behavior at the boundary 311

Index 319

精品推荐