图书介绍

恒星结构与演化 第2版=STELLAR STRUCTURE AND EVOLUTION 2ND EDITION 英文pdf电子书版本下载

恒星结构与演化 第2版=STELLAR STRUCTURE AND EVOLUTION 2ND EDITION 英文
  • (法)雅克·朗西埃著 著
  • 出版社:
  • ISBN:
  • 出版时间:2014
  • 标注页数:0页
  • 文件大小:95MB
  • 文件页数:622页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

恒星结构与演化 第2版=STELLAR STRUCTURE AND EVOLUTION 2ND EDITION 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part Ⅰ The Basic Equations 3

1 Coordinates,Mass Distribution,and Gravitational Field in Spherical Stars 3

1.1 Eulerian Description 3

1.2 Lagrangian Description 4

1.3 The Gravitational Field 6

2 Conservation of Momentum 9

2.1 Hydrostatic Equilibrium 9

2.2 The Role of Density and Simple Solutions 10

2.3 Simple Estimates of Central Values Pc,Tc 12

2.4 The Equation of Motion for Spherical Symmetry 13

2.5 The Non-spherical Case 15

2.6 Hydrostatic Equilibrium in General Relativity 15

2.7 The Piston Model 17

3 The Virial Theorem 19

3.1 Stars in Hydrostatic Equilibrium 19

3.2 The Virial Theorem of the Piston Model 21

3.3 The Kelvin-Helrnholtz Timescale 22

3.4 The Virial Theorem for Non-vanishing Surface Pressure 23

4 Conservation of Energy 25

4.1 Thermodynamic Relations 25

4.2 The Perfect Gas and the Mean Molecular Weight 28

4.3 Thermodynamic Quantities for the Perfect,Monatomic Gas 30

4.4 Energy Conservation in Stars 31

4.5 Global and Local Energy Conservation 33

4.6 Timescales 35

5 Transport of Energy by Radiation and Conduction 37

5.1 Radiative Transport of Energy 37

5.1.1 Basic Estimates 37

5.1.2 Diffusion of Radiative Energy 38

5.1.3 The Rosseland Mean for Kv 40

5.2 Conductive Transport of Energy 42

5.3 The Thermal Adjustment Time of a Star 43

5.4 Thermal Properties of the Piston Model 45

6 Stability Against Local,Non-spherical Perturbations 47

6.1 Dynamical Instability 47

6.2 Oscillation of a Displaced Element 52

6.3 Vibrational Stability 54

6.4 The Thermal Adiustment Time 55

6.5 Secular Instability 56

6.6 The Stability of the Piston Model 58

7 Transport of Energy by Convection 61

7.1 The Basic Picture 62

7.2 Dimensionless Equations 65

7.3 Limiting Cases,Solutions,Discussion 66

7.4 Extensions of the Mixing-Length Theory 70

8 The Chemical Composition 73

8.1 Relative Mass Abundances 73

8.2 Variation of Composition with Time 74

8.2.1 Radiative Regions 74

8.2.2 Diffusion 76

8.2.3 Convective Regions 80

9 Mass Loss 83

Part Ⅱ The Overall Problem 89

10 The Differential Equations of Stellar Evolution 89

10.1 The Full Set of Equations 89

10.2 Timescales and Simplifications 91

11 Boundary Conditions 93

11.1 Central Conditions 93

11.2 Surface Conditions 95

11.3 Influence of the Surface Conditions and Properties of Envelope Solutions 98

11.3.1 Radiative Envelopes 98

11.3.2 Convective Envelopes 101

11.3.3 Summary 102

11.3.4 The T-r Stratification 102

12 Numerical Procedure 105

12.1 The Shooting Method 105

12.2 The Henyey Method 106

12.3 Treatment of the First-and Second-Order Time Derivatives 113

12.4 Treatment of the Diffusion Equation 115

12.5 Treatment of Mass Loss 117

12.6 Existence and Uniqueness 118

Part Ⅲ Properties of Stellar Matter 123

13 The Perfect Gas with Radiation 123

13.1 Radiation Pressure 123

13.2 Thermodynamic Quantities 124

14 Ionization 127

14.1 The Boltzmann and Saha Formulae 127

14.2 Ionization of Hydrogen 130

14.3 Thermodynamical Quantities for a Pure Hydrogen Gas 132

14.4 Hydrogen-Helium Mixtures 133

14.5 The General Case 135

14.6 Limitation of the Saha Formula 137

15 The Degenerate Electron Gas 139

15.1 Consequences of the Pauli Principle 139

15.2 The Completely Degenerate Electron Gas 140

15.3 Limiting Cases 144

15.4 Partial Degeneracy of the Electron Gas 145

16 The Equation of State of Stellar Matter 151

16.1 The Ion Gas 151

16.2 The Equation of State 152

16.3 Thermodynamic Quantities 154

16.4 Crystallization 157

16.5 Neutronization 158

16.6 Real Gas Effects 159

17 Opacity 163

17.1 Electron Scattering 163

17.2 Absorption Due to Free-Free Transitions 164

17.3 Bound-Free Transitions 165

17.4 Bound-Bound Transitions 166

17.5 The Negative Hydrogen Ion 168

17.6 Conduction 169

17.7 Molecular Opacities 170

17.8 Opacity Tables 172

18 Nuclear Energy Production 175

18.1 Basic Considerations 175

18.2 Nuclear Cross Sections 179

18.3 Thermonuclear Reaction Rates 182

18.4 Electron Shielding 188

18.5 The Major Nuclear Burning Stages 192

18.5.1 Hydrogen Burning 193

18.5.2 Helium Burning 197

18.5.3 Carbon Burning and Beyond 199

18.6 Neutron-Capture Nucleosynthesis 201

18.7 Neutrinos 205

Part Ⅳ Simple Stellar Models 213

19 Polytropic Gaseous Spheres 213

19.1 Polytropic Relations 213

19.2 Polytropic Stellar Models 215

19.3 Properties of the Solutions 216

19.4 Application to Stars 218

19.5 Radiation Pressure and the Polytrope n=3 219

19.6 Polytropic Stellar Models with Fixed K 220

19.7 Chandrasekhar's Limiting Mass 221

19.8 Isothermal Spheres of an Ideal Gas 222

19.9 Gravitational and Total Energy for Polytropes 224

19.10 Supermassive Stars 226

19.11 A Collapsing Polytrope 227

20 Homology Relations 233

20.1 Definitions and Basic Relations 233

20.2 Applications to Simple Material Functions 237

20.2.1 The Caseδ=0 237

20.2.2 The Caseα=δ=ψ=1,a=b=0 237

20.2.3 The Role of the Equation of State 239

20.3 Homologous Contraction 241

21 Simple Models in the U-V Plane 243

21.1 The U-V Plane 243

21.2 Radiative Envelope Solutions 246

21.3 Fitting of a Convective Core 248

21.4 Fitting of an Isothermal Core 250

22 The Zero-Age Main Sequence 251

22.1 Surface Values 251

22.2 Interior Solutions 254

22.3 Convective Regions 258

22.4 Extreme Values of M 260

22.5 The Eddington Luminosity 261

23 Other Main Sequences 263

23.1 The Helium Main Sequence 263

23.2 The Carbon Main Sequence 266

23.3 Generalized Main Sequences 267

24 The Hayashi Line 271

24.1 Luminosity of Fully Convective Models 272

24.2 A Simple Description of the Hayashi Line 273

24.3 The Neighbourhood of the Hayashi Line and the Forbidden Region 276

24.4 Numerical Results 279

24.5 Limitations for Fully Convective Models 281

25 Stability Considerations 283

25.1 General Remarks 283

25.2 Stability of the Piston Model 285

25.2.1 Dynamical Stability 285

25.2.2 Inclusion of Non-adiabatic Effects 286

25.3 Stellar Stability 288

25.3.1 Perturbation Equations 289

25.3.2 Dynamical Stability 290

25.3.3 Non-adiabatic Effects 292

25.3.4 The Gravothermal Specific Heat 293

25.3.5 Secular Stability Behaviour of Nuclear Burning 294

Part Ⅴ Early Stellar Evolution 299

26 The Onset of Star Formation 299

26.1 The Jeans Criterion 299

26.1.1 An Infinite Homogeneous Medium 299

26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium 302

26.2 Instabilityin the Spherical Case 303

26.3 Fragmentation 307

27 The Formation of Protostars 311

27.1 Free-Fall Collapse of a Homogeneous Sphere 311

27.2 Collapse onto a Condensed Object 313

27.3 A Collapse Calculation 314

27.4 The Optically Thin Phase and the Formation of a Hydrostatic Core 315

27.5 Core Collapse 317

27.6 Evolution in the Hertzsprung-Russell Diagram 320

28 Pre-Main-Sequence Contraction 323

28.1 Homologous Contraction of a Gaseous Sphere 323

28.2 Approach to the Zero-Age Main Sequence 326

29 From the Initial to the Present Sun 329

29.1 Known Solar Data 329

29.2 Choosing the Initial Model 331

29.3 A Standard Solar Model 333

29.4 Results of Helioseismology 336

29.5 Solar Neutrinos 338

30 Evolution on the Main Sequence 343

30.1 Change in the Hydrogen Content 343

30.2 Evolution in the Hertzsprung-Russell Diagram 346

30.3 Timescales for Central Hydrogen Burning 347

30.4 Complications Connected with Convection 348

30.4.1 Convective Overshooting 349

30.4.2 Semiconvection 354

30.5 The Sch?nberg-Chandrasekhar Limit 356

30.5.1 A Simple Approach:The Virial Theorem and Homology 358

30.5.2 Integrations for Core and Envelope 360

30.5.3 Complete Solutions for Stars with Isothermal Cores 361

Part Ⅵ Post-Main-Sequence Evolution 367

31 Evolution Through Helium Burning:Intermediate-Mass Stars 367

31-1 Crossing the Hertzsprung Gap 367

31.2 Central Helium Burning 371

31.3 The Cepheid Phase 375

31.4 To Loop or Not to Loop 378

31.5 After Central Helium Burning 384

32 Evolution Through Helium Burning:Massive Stars 385

32.1 Semiconvection 385

32.2 Overshooting 387

32.3 Mass Loss 389

33 Evolution Through Helium Burning:Low-Mass Stars 391

33.1 Post-Main-Sequence Evolution 391

33.2 Shell-Source Homology 392

33.3 Evolution Along the Red Giant Branch 397

33.4 The Helium Flash 401

33.5 Numerical Results for the Helium Flash 402

33.6 Evolution After the Helium Flash 407

33.7 Evolution from the Zero-Age Horizontal Branch 410

Part Ⅶ Late Phases of Stellar Evolution 417

34 Evolution on the Asymptotic Giant Branch 417

34.1 Nuclear Shells on the Asymptotic Giant Branch 417

34.2 Shell Sources and Their Stability 419

34.3 Thermal Pulses of a Shell Source 422

34.4 The Core-Mass-Luminosity Relation for Large Core Masses 424

34.5 Nucleosynthesis on the AGB 426

34.6 Mass Loss on the AGB 430

34.7 A Sample AGB Evolution 433

34.8 Super-AGB Stars 436

34.9 Post-AGB Evolution 438

35 Later Phases of Core Evolution 439

35.1 Nuclear Cycles 439

35.2 Evolution of the Central Region 441

36 Final Explosions and Collapse 449

36.1 The Evolution of the CO-Core 450

36.2 Carbon Ignition in Degenerate Cores 454

36.2.1 The Carbon Flash 454

36.2.2 Nuclear Statistical Equilibrium 455

36.2.3 Hydrostatic and Convective Adjustment 458

36.2.4 Combustion Fronts 459

36.2.5 Carbon Burning in Accreting White Dwarfs 461

36.3 Collapse of Cores of Massive Stars 461

36.3.1 Simple Collapse Solutions 462

36.3.2 The Reflection of the Infall 465

36.3.3 Effects of Neutrinos 466

36.3.4 Electron-Capture Supernovae 469

36.3.5 Pair-Creation Instability 469

36.4 The Supernova-Gamma-Ray-Burst Connection 471

Part Ⅷ Compact Objects 475

37 White Dwarfs 475

37.1 Chandrasekhar's Theory 475

37.2 The Corrected Mechanical Structure 479

37.2.1 Crystallization 480

37.2.2 Pycnonuclear Reactions 482

37.2.3 Inverse β Decays 483

37.2.4 Nuclear Equilibrium 483

37.3 Thermal Properties and Evolution of White Dwarfs 487

38 Neutron Stars 497

38.1 Cold Matter Beyond Neutron Drip 497

38.2 Models of Neutron Stars 501

39 Black Holes 509

Part Ⅸ Pulsating Stars 519

40 Adiabatic Spherical Pulsations 519

40.1 The Eigenvalue Problem 519

40.2 The Homogeneous Sphere 523

40.3 Pulsating Polytropes 525

41 Non-adiabatic Spherical Pulsations 529

41.1 Vibrational Instability of the Piston Model 529

41.2 The Quasi-adiabatic Approximation 531

41.3 The Energy Integral 532

41.3.1 The к Mechanism 534

41.3.2 The ε Mechanism 534

41.4 Stars Driven by the к Mechanism:The Instability Strip 535

41.5 Stars Driven by the ε Mechanism 541

42 Non-radial Stellar Oscillations 543

42.1 Perturbations of the Equilibrium Model 543

42.2 Normal Modes and Dimensionless Variables 545

42.3 The Eigenspectra 548

42.4 Stars Showing Non-radial Oscillations 552

Part Ⅹ Stellar Rotation 557

43 The Mechanics of Rotating Stellar Models 557

43.1 Uniformly Rotating Liquid Bodies 557

43.2 The Roche Model 560

43.3 Slowly Rotating Polytropes 562

44 The Thermodynamics of Rotating Stellar Models 565

44.1 Conservative Rotation 565

44.2 Von Zeipel'sT heorem 566

44.3 Meridional Circulation 567

44.4 The Non-conservative Case 569

44.5 The Eddington-Sweet Timescale 570

44.6 Meridional Circulation in Inhomogeneous Stars 573

45 The Angular-Velocity Distribution in Stars 575

45.1 Viscosity 575

45.2 Dynamical Stability 577

45.3 Secular Stability 582

References 587

Index 595

精品推荐