图书介绍

foundations of materials science and engineeringpdf电子书版本下载

foundations of materials science and engineering
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:229MB
  • 文件页数:1045页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
下载压缩包 [复制下载地址] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页

下载说明

foundations of materials science and engineeringPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Introduction to Materials Scienceand Engineering 2

1.1 Materials and Engineering 3

1.2 Materials Science and Engineering 6

1.3 Types of Materials 8

1.3.1 Metallic materials 8

1.3.2 Polymeric Materials 10

1.3.3 Ceramic Materials 11

1.3.4 Composite Materials 13

1.3.5 Electronic Materials 15

1.4 Competition Among Materials 16

1.5 Recent Advances in Materials Science andTechnology and Future Trends 18

1.5.1 Smart Materials 18

1.5.2 Nanomaterials 19

1.6 Design and Selection 20

1.7 Summary 21

1.8 Delinitions 21

1.9 Problems 22

1.10 Materials Selection and DesignProblems 23

CHAPTER 2 Atomic Structure and Bonding 24

2.1 The Structure of Atoms 25

2.2 Atomic Numbers and Atomic Masses 26

2.2.1 Atomic Numbers 26

2.2.2 Atomic Masses 26

2.3 The Electronic Structure of Atoms 29

2.3.1 The Hydrogen Atom 29

2.3.2 Quantum Numbers of Electrons ofAtoms 33

2.3.3 Electronic Structure of MultielectronAtoms 35

2.3.4 Electronic Structure and ChemicalReactivity 39

2.4 Types of Atomic and MolecularBonds 41

2.4.1 Primary Atomic Bonds 42

2.4.2 Secondarv Atomic and MolecularBonds 42

2.5 Ionic Bonding 42

2.5.1 Ionic Bonding in General 42

2.5.2 Interionic Forces for an Ion Pair 43

2.5.3 Interionic Energies for an Ion Pair 46

2.5.4 Ion Arrangements in Ionic Solids 47

2.5.5 Bonding Energies of Ionic Solids 48

2.6 Covalent Bonding 49

2.6.1 Covalent Bonding in the HydrogenMolecule 49

2.6.2 Covalent Bonding in Other DiatomicMolecules 50

2.6.3 Covalent Bonding by Carbon 51

2.6.4 Covalent Bonding in Carbon-ContainingMolecules 53

2.6.5 Benzene 53

2.7 Metallic Bonding 55

2.8 Secondary Bonding 59

2.8.1 Fluctuating Dipoles 60

2.8.2 Permanent Dipoles 61

2.9 Mixed Bonding 62

2.9.1 Ionic-Covalent Mixed Bonding 62

2.9.2 Metallic-Covalent Mixed Bonding 63

2.9.3 Metallic-Ionic Mixed Bonding 64

2.10 Summary 64

2.11 Definitions 65

2.12 Problems 66

2.13 Materials Selection and DesignProblems 70

CHAPTER 3 Crystal and AmorphousStructure in Materials 72

3.1 The Space Lattice and Unit Cells 73

3.2 Crystal Systems and BravaisLattices 74

3.3 Principal Metallic CrystalStructures 75

3.3.1 Bodv-Centered Cubic (BCC) CrystalStructure 77

3.3.2 Face-Centered Cubic (FCC) CrystalStructure 80

3.3.3 Hexagonal Close-Packed (HCP) CrystalStructure 81

3.4 Atom Positions in Cubic Unit Cells 83

3.5 Directions in Cubic Unit Cells 84

3.6 Miller Indices for Crystallographic Planes inCubic Unit Cells 88

3.7 Crystallographic Planes and Directions inHexagonal Crystal Structure 93

3.7.1 Indices for Crystal Planes in HCP UnitCells 93

3.7.2 Direction Indices in HCP UnitCells 94

3.8 Comparison of FCC, HCP, and BCC CrystalStructures 96

3.8.1 FCC and HCP Crystal Structures 96

3.8.2 BCC Crystal Structuty 98

3.9 Volume, Planar, and Linear Density Unit-Cell Calculations 98

3.9.1 Volume Density 98

3.9.2 PlanarAtomic Density 99

3.9.3 Linear Atomic Density 101

3.10 Polymorphism or Allotropy 102

3.11 Crystal Structure Analysis 103

3.11.1 X-Ray Sources 104

3.11.2 X-Ray Diffraction 105

3.11.3 X-Ray Diffraction Analysis of CrystalStructures 107

3.12 Amorphous Materials 113

3.13 Summary 114

3.14 Definitions 115

3.15 Problems 116

3.16 Materials Selection and DesignProblems 122

CHAPTER 4 Solidification and CrystallineImperfections 124

4.1 Solidification of Metals 125

4.1.1 The Formation of Stable Nuclei in LiquidMetals 127

4.1.2 Growth of Crystals in Liquid Metal andFormation of a Grain Structure 132

4.1.3 Grain Structure of IndustrialCastings 133

4.2 Solidification of Single Crystals 134

4.3 Metallic Solid Solutions 138

4.3.1 Substitutional Solid Solutions 139

4.3.2 Interstitial Solid Solutions 141

4.4 Crystalline Imperfections 143

4.4.1 Point Defects 143

4.4.2 Line Defects (Dislocations) 144

4.4.3 Planar Defects 147

4.4.4 Volume Defects 150

4.5 Experimental Techniques for Identificationof Microstructure and Defects 151

4.5.1 Optical Metallography, ASTM Grain Size,and Grain Diameter Determination 151

4.5.2 Scanning Electron Microscopy(SEM) 156

4.5.3 Transmission Electron Microscopy(TEM) 158

4.5.4 High-Resolution Transmission ElectronMicroscopy (HRTEM) 159

4.5.5 Scanning Probe Microscopes and AtomicResolution 161

4.6 Summary 166

4.7 Definitions 166

4.8 Problems 168

4.9 Materials Selection and DesignProblems 170

CHAPTER 5 Thermally Activated Processes andDiffusiop in Solids 172

5.1 Rate Processes in Solids 173

5.2 Atomic Diffusion in Solids 177

5.2.1 Diffusion in Solids in General 177

5.2.2 Diffusion Mechanisms 177

5.2.3 Steady-State Diffusion 180

5.2.4 Non-Steady-State Diffusion 182

5.3 Industrial Applications of DiffusionProcesses 184

5.3.1 Case Hardening of Steel by Gas Carburizing 184

5.3.2 Impurity Diffusion into Silicon Wafers forIntegrated Circuits 188

5.4 Effect of Temperature on Diffusion inSolids 191

5.5 Summary 195

5.6 Definitions 195

5.7 Problems 196

5.8 Materials Selection and DesignProblems 198

CHAPTER 6 Mechanical Properties ofMetals Ⅰ 200

6.1 The Processing of Metals and Alloys 201

6.1.1 The Casting of Metals and Alloys 201

6.1.2 Hot and Cold Rolling of Metals andAlloys 203

6.1.3 Extrusion of Metals and Alloys 208

6.1.4 Forging 209

6.1.5 Other Metal-Forming Processes 211

6.2 Stress and Strain in Metals 212

6.2.1 Elastic and Plastic Deformation 213

6.2.2 Engineering Stress and EngineeringStrain 213

6.2.3 Poisson's Ratio 216

6.2.4 Shear Stress and Shear Strain 216

6.3 The Tensile Test and the Engineering Stress-Strain Diagram 217

6.3.1 Mechanical Property Data Obtained from the Tensile Test and the EngineeringStress-Strain Diagram 220

6.3.2 Comparison of Engineering Stress-StrainCurves for Selected Alloys 225

6.3.3 True Stress and True Strain 225

6.4 Hardness and Hardness Testing 227

6.5 Plastic Deformation of Metal SingleCrystals 229

6.5.1 Slipbands and Slip Lines on the Surface ofMetal Crystals 229

6.5.2 Plastic Deformation in Metal Crystals by the Slip Mechanism 232

6.5.3 Slip Systems 234

6.5.4 Critical Resolved Shear Stress for MetalSingle Crystals 235

6.5.5 Schmid's Law 237

6.5.6 Twinning 240

6.6 Plastic Deformation of PolycrystallineMetals 242

6.6.1 Effect of Grain Boundaries on the Strengthof Metals 242

6.6.2 Effect of Plastic Deformation onGrain Shape and DislocationArrangements 244

6.6.3 Effect of Cold Plastic Deformation onIncreasing the Strength of Metals 246

6.7 Solid-Solution Strengthening of Metals 247

6.8 Recovery and Recrystallization ofPlastically Deformed Metals 249

6.8.1 Structure of a Heavily Cold-Worked Metal before Reheating 250

6.8.2 Recoverv 251

6.8.3 Recrvstallization 252

6.9 Superplasticity in Metals 257

6.10 Nanocrystalline Metals 259

6.11 Summary 261

6.12 Definitions 262

6.13 Problems 263

6.14 Materials Selection and DesignProblems 268

CHAPTER 7 Mechanical Properties ofMetals Ⅱ 270

7.1 Fracture of Metals 271

7.1.1 Ductile Fracture 272

7.1.2 Brittle Fracture 273

7.1.3 Toughness and Impact Testing 276

7.1.4 Ductile to Brittle TransitionTemperature 276

7.1.5 Fracture Toughness 279

7.2 Fatigue of Metals 281

7.2.1 Cyclic Stresses 285

7.2.2 Basic Structural Changes that Occur in a Ductile Metal in the FatigueProcess 286

7.2.3 Some Major Factors that Affect theFatigue Strength of a Metal 287

7.3 Fatigue Crack Propagation Rate 288

7.3.1 Correlation of Fatigue CrackPropagation with Stress and CrackLength 288

7.3.2 Fatigue Crack Growth Rate versus Stress-Intensity Factor Range Plots 290

7.3.3 Fatigue Lifee Calculations 292

7.4 Creep and Stress Rupture of Metals 294

7.4.1 Creep of Metals 294

7.4.2 The Creep Test 296

7.4.3 Creep-Rupture Test 297

7.5 Graphical representation of Creep- andStress-Rupture Time-Temperature DataUsing the Larsen-Miller Parameter 298

7.6 A Case Study in Failure of MetallicComponents 300

7.7 Recent Advances and Future Directions inImproving the Mechanical Performance ofMetals 303

7.7.1 Improving Ductility and StrengthSimultaneously 303

7.7.2 Fatigue Behavior in Nanocrystalline Metals 305

7.8 Summary 305

7.9 Definitions 306

7.10 Problems 307

7.11 Materials Selection and DesignProblems 309

CHAPTER 8 Phase Diagrams 310

8.1 Phase Diagrams of Pure Substances 311

8.2 Gibbs Phase Rule 313

8.3 Cooling Curves 314

8.4 Binary Isomorphous Alloy Systems 315

8.5 The Lever Rule 318

8.6 Nonequilibrium Solidification of Alloys 322

8.7 Binary Eutectic Alloy Systems 326

8.8 Binary Peritectic Alloy Systems 333

8.9 Binary Monotectic Systems 338

8.10 Invariant Reactions 339

8.11 Phase Diagrams with Intermediate Phasesand Compounds 341

8.12 Ternary Phase Diagrams 345

8.13 Summary 348

8.14 Dernnitions 349

8.15 Problems 351

8.16 Materials Selection and DesignProblems 355

CHAPTER 9 Engineering Alloys 358

9.1 Production of Iron and Steel 360

9.1.1 Production of Pig Iron in a BlastFurnace 360

9.1.2 Steelmaking and Processing of Major SteelProduct Forms 361

9.2 The Iron-Iron-Carbide System 363

9.2.1 The Iron-Iron-Carbide PhaseDiagram 363

9.2.2 Solid Phases in the Fe-Fe3C PhaseDiagram 363

9.2.3 Invariant Reactions in the Fe-Fe3C PhaseDiagram 364

9.2.4 Slow Cooling of Plain-Carbon Steels 366

9.3 Heat Treatment of Plain-CarbonSteels 373

9.3.1 Martensite 373

9.3.2 Isothermal Decomposition ofAustenite 378

9.3.3 Continuous-Cooling TransformationDiagram for a Eutectoid Plain-CarbonSteel 383

9.3.4 Annealing and Normalizing of Plain-Carbon Steels 386

9.3.5 Tempering of Plain-Carbon Steels 387

9.3.6 Classification of Plain-Carbon Steels andTypical Mechanical Properties 391

9.4 Low-Alloy Steels 392

9.4.1 Classification of Alloy Steels 392

9.4.2 Distribution of Alloying Elements in AlloySteels 394

9.4.3 Effects of Alloying Elements on theEutectoid Temperature of Steels 395

9.4.4 Hardenability 396

9.4.5 Typical Mechanical Properties andApplications for Low-Alloy Steels 401

9.5 Aluminum Alloys 401

9.5.1 Precipitation Strengthening(Hardening) 403

9.5.2 General Properties of Aluminum and ItsProduction 410

9.5.3 Wrought Aluminum Alloys 411

9.5.4 Aluminum Casting Alloys 416

9.6 Copper Alloys 418

9.6.1 General Properties of Copper 418

9.6.2 Production of Copper 419

9.6.3 Classification of Copper Alloys 419

9.6.4 Wrought Copper Alloys 422

9.7 Stainless Steels 424

9.7.1 Ferritic Stainless Steels 424

9.7.2 Martensitic Stainless Steels 425

9.7.3 Austenitic Stainless Steels 427

9.8 Cast Irons 429

9.8.1 General Properties 429

9.8.2 Types of Cast Irons 429

9.8.3 White Cast Iron 429

9.8.4 Gray Cast Iron 431

9.8.5 Ductile Cast Irons 432

9.8.6 Malleable Cast Irons 435

9.9 Magnesium, Titanium, and NickelAlloys 436

9.9.1 Magnesium Alloys 436

9.9.2 Titanium Alloys 438

9.9.3 Nickel Alloys 440

9.10 Special-Purpose Alloys andApplications 441

9.10.1 Intermetallics 441

9.10.2 Shape-Memory Alloys 442

9.10.3 Amorphous Metals 446

9.11 Metals in Biomedical Applications—Biometals 448

9.11.1 Stainless Steels 449

9.11.2 Cobalt-Based Alloys 449

9.11.3 Titanium Alloys 451

9.12 Some Issues in the Orthopedic Application of Metals 452

9.13 Summary 454

9.14 Definitions 455

9.15 Problems 457

9.16 Materials Selection and DesignProblems 465

CHAPTER 10 Polymeric Materials 468

10.1 Introduction 469

10.2 Polymerization Reactions 471

10.2.1 Covalent Bonding Structure of anEthylene Molecule 471

10.2.2 Covalent Bonding Structure of an Activated Ethylene Molecule 472

10.2.3 General Reaction for the Polymerization of Polyethylene and the Degree ofPolvmerization 473

10.2.4 Chain Polymerization Steps 473

10.2.5 Average Molecular Weight forThermoplastics 475

10.2.6 Functionality of a Monomer 476

10.2.7 Structure of Noncrystalline LinearPolymers 476

10.2.8 Vinyl and Vinylidene Polymers 478

10.2.9 Homopolymers and Copolymers 479

10.2.10 Other Methods of Polymerization 482

10.3 Industrial Polymerization Methods 484

10.4 Crystallinity and Stereoisomerism in SomeThermoplastics 486

10.4.1 Solidification of NoncrystallineThermoplastics 486

10.4.2 Solidification of Partly CrystallineThermoplastics 486

10.4.3 Structure of Partly CrystallineThermoplastic Materials 488

10.4.4 Stereoisomerism in Thermoplastics 489

10.4.5 Ziegler and Natta Catalysts 490

10.5 Processing of Plastic Materials 491

10.5.1 Processes Used for ThermoplasticMaterials 492

10.5.2 Processes Used for ThermosettingMaterials 496

10.6 General-Purpose Thermoplastics 498

10.6.1 Polyethylene 500

10.6.2 Polyvinyl Chloride and Copolymers 503

10.6.3 Polypropylene 505

10.6.4 Polvstvrene 505

10.6.5 Polvacrvlonitrile 506

10.6.6 Styrene-Acrylonitrile (SAN) 507

10.6.7 ABS 507

10.6.8 Polymethyl Methacrylate (PMMA) 509

10.6.9 Fluoroplastics 510

10.7 Engineering Thermoplastics 511

10.7.1 Polyamides (Nylons) 512

10.7.2 Polycarbonate 515

10.7.3 Phenylene Oxide-Based Resins 516

10.7.4 Acetals 517

10.7.5 Thermoplastic Polyesters 518

10.7.6 Polyphenylene Sulfide 519

10.7.7 Polvetherimide 520

10.7.8 PolvmerAllovs 521

10.8 Thermosetting Plastics (Thermosets) 521

10.8.1 Phenolics 523

10.8.2 Epoxy Resins 525

10.8.3 Unsaturated Polyesters 527

10.8.4 Amino Resins (Ureas andMelamines) 529

10.9 Elastomers (Rubbers) 531

10.9.1 Natural Rubber 531

10.9.2 Synthetic Rubbers 534

10.9.3 Properties of PolychloropreneElastomers 536

10.9.4 Vulcanization of PolychloropreneElastomers 536

10.10 Deformation and Strengthening of PlasticMaterials 539

10.10.1 Deformation Mechanisms forThermoplastics 539

10.10.2 Strengthening of Thermoplastics 541

10.10.3 Strengthening of ThermosettingPlastics 545

10.10.4 Effect of Temperature on the Strength ofPlastic Materials 545

10.11 Creep and Fracture of PolymericMaterials 546

10.11.1 Creep of Polymeric Materials 546

10.11.2 Stress Relaxation of PolymericMaterials 547

10.11.3 Fracture of PolymericMaterials 550

10.12 Polymers in Biomedical Applications—Biopolymers 552

10.12.1 Cardiovascular Applications ofPolymers 553

10.12.2 Ophthalmic Applications 554

10.12.3 Drug-Delivery Systems 555

10.12.4 Suture Materials 556

10.12.5 Orthopedic Applications 556

10.13 Summary 557

10.14 Definitions 558

10.15 Problems 560

10.16 Materials Selection and DesignProblems 570

CHAPTER 11 Ceramics 572

11.1 Introduction 573

11.2 Simple Ceramic CrystalStructures 575

11.2.1 Ionic and Covalent Bonding in SimpleCeramic Compounds 575

11.2.2 Simple Ionic Arrangements Found inlonically Bonded Solids 576

11.2.3 Cesium Chloride (CsCl) CrystalStructure 579

11.2.4 Sodium Chloride (NaCl) CrystalStructure 580

11.2.5 Interstitial Sites in FCC and HCP CrystalLattices 584

11.2.6 Zinc Blende (ZnS) CrystalStructure 586

11.2.7 Calcium Fluoride (CaF2) CrystalStructure 588

11.2.8 Antifluorite Crystal Structure 590

11.2.9 Corundum (Al2O3) CrystalStructure 590

11.2.10 Spinel (MgAl204) Crystal Structure 590

11.2.11 Perovskite (CaTiO3) Crystal Structure 590

11.2.12 Carbon and Its Allotropes 591

11.3 Silicate Structures 595

11.3.1 Basic Structural Unit of the SilicateStructures 595

11.3.2 Island, Chain, and Ring Structures ofSilicates 595

11.3.3 Sheet Structures of Silicates 595

11.3.4 Silicate Networks 597

11.4 Processing of Ceramics 598

11.4.1 Materials Preparation 599

11.4.2 Forming 599

11.4.3 Thermal Treatments 604

11.5 Traditional and EngineeringCeramics 606

11.5.1 Traditional Ceramics 606

11.5.2 Engineering Ceramics 609

11.6 Mechanical Properties of Ceramics 611

11.6.1 General 611

11.6.2 Mechanisms for the Deformation of Ceramic Materials 611

11.6.3 Factors Affecting the Strength of CeramicMaterials 612

11.6.4 Toughness of Ceramic Materials 613

11.6.5 Transformation Toughening of PartiallyStabilized Zirconia (PSZ) 615

11.6.6 Fatigue Failure of Ceramics 615

11.6.7 Ceramic Abrasive Materials 617

11.7 Thermal Properties of Ceramics 618

11.7.1 Ceramic Refractory Materials 619

11.7.2 Acidic Refractories 620

11.7.3 Basic Refractories 620

11.7.4 Ceramic Tile Insulation for the SpaceShuttle Orbiter 620

11.8 Glasses 620

11.8.1 Definition of a Glass 622

11.8.2 Glass Transition Temperature 622

11.8.3 Structure of Glasses 623

11.8.4 Composition of Glasses 624

11.8.5 Viscous Deformation of Glasses 626

11.8.6 Forming Methods for Glasses 628

11.8.7 Tempered Glass 630

11.8.8 Chemically Strengthened Glass 630

11.9 Ceramic Coatings and SurfaceEngineering 632

11.9.1 Silicate Glasses 632

11.9.2 Oxides and Carbides 632

11.10 Ceramics in Biomedical Applications 634

11.10.1 Alumina in OrthopedicImplants 634

11.10.2 Alumina in Dental Implants 636

11.10.3 Ceramic Implants and TissueConnectivity 636

11.11 Nanotechnology and Ceramics 637

11.12 Summary 639

11.13 Definitions 640

11.14 Problems 642

11.15 Materials Selection and DesignProblems 646

CHAPTER 12 Composite Materials 648

12.1 Introduction 649

12.2 Fibers for Reinforced-Plastic CompositeMaterials 651

12.2.1 Glass Fibers for Reinforcing PlasticResins 651

12.2.2 Carbon Fibers for ReinforcedPlastics 653

12.2.3 Aramid Fibers for Reinforcing PlasticResins 654

12.2.4 Comparison of Mechanical Propertiesof Carbon, Aramid, and Glass Fibersfor Reinforced-Plastic CompositeMaterials 655

12.3 Fiber-Reinforced-Plastic CompositeMaterials 657

12.3.1 Matrix Materials for Fiber-ReinforcedPlastic Composite Materials 657

12.3.2 Fiber-Reinforced-Plastic CompositeMaterials 658

12.3.3 Equations for Elastic Modulus of aLamellar Continuous-Fiber-PlasticMatrix Composite for Isostrain andIsostress Conditions 662

12.4 Open-Mold Processes for Fiber-Reinforced-Plastic Composite Materials 667

12.4.1 Hand Lay-Up Process 667

12.4.2 Spray-Up Process 667

12.4.3 Vacuum Bag-Autoclave Process 668

12.4.4 Filament-Winding Process 670

12.5 Closed-Mold Processes for Fiber-ReinforcedPlastic Composite Materials 672

12.5.1 Compression and Injection Molding 672

12.5.2 The Sheet-Molding Compound (SMC)Process 672

12.5.3 Continuous-Prorusion Process 674

12.6 Concrete 674

12.6.1 Portland Cement 675

12.6.2 Mixing Water for Concrete 678

12.6.3 Aggregates for Concrete 679

12.6.4 Air Entrainment 679

12.6.5 Compressive Strength of Concrete 679

12.6.6 Proportioning of Concrete Mixtures 679

12.6.7 Reinfoorced and Prestressed Concrete 682

12.6.8 Prestressed Concrete 683

12.7 Sandwich Structures 684

12.7.1 Honeycomb Sandwich Structure 684

12.7.2 Cladded Metal Structures 685

12.8 Metal-Matrix and Ceramic-MatrixComposites 685

12.8.1 Metal-Matrix Composites (MMCs) 685

12.8.2 Ceramic-Matrix Composites(CMCs) 689

12.8.3 Ceramic Composites andNanotechnology 692

12.9 Bone: A Natural Composite Material 692

12.9.1 Composition 692

12.9.2 Macrostructure 692

12.9.3 Mechanical Properties 694

12.9.4 Biomechanics of Bone Fracture 695

12.9.5 Viscoelasticity of the Bone 696

12.9.6 Bone Remodeling 696

12.9.7 Nanotechnology and Bone Repair 697

12.10 Summary 697

12.11 Definitions 698

12.12 Problems 700

12.13 Materials Selection and DesignProblems 704

CHAPTER 13 Corrosion 706

13.1 General 707

13.2 Electrochemical Corrosion of Metals 708

13.2.1 Oxidation-Reduction Reactions 708

13.2.2 Standard Electde Half-Cell Potentialsfor Metals 710

13.3 Galvanic Cells 712

13.3.1 Macroscopic Galvanic Cells withElectrolytes That Are One Molar 712

13.3.2 Galvanic Cells with Electrolytes That AreNot One Molar 714

13.3.3 Galvanic Cells with Acid or Alkalinefor Metals Electrolytes with No Metal IonsPresent 715

13.3.4 Microscopic Galvanic Cell Corrosion ofSingle Electrodes 717

13.3.5 Concentration Galvanic Cells 718

13.3.6 Galvanic Cells Created by Differences inComposition, Structure, and Stress 721

13.4 Corrosion Rates (Kinetics) 723

13.4.1 Rate of Uniform Corrosion orElectroplating of a Metal in an AqueousSolution 724

13.4.2 Corrosion Reactions and Polarization 727

13.4.3 Passivation 730

13.4.4 The Galvanic Series 731

13.5 Types of Corrosion 733

13.5.1 Uniform or General Attack Corrosion 733

13.5.2 Galvanic or Two-Metal Corrosion 733

13.5.3 Pitting Corrosion 734

13.5.4 Crevice Corrosion 737

13.5.5 lntergranular Corrosion 739

13.5.6 Stress Corrosion 741

13.5.7 Erosion Corrosion 744

13.5.8 Cavitation Damage 744

13.5.9 Fretting Corrosion 745

13.5.10 Selective Leaching 745

13.5.11 Hydrogen Damage 746

13.6 Oxidation of Metals 747

13.6.1 Protective Oxide Films 747

13.6.2 Mechanisms of Oxidation 749

13.6.3 Oxidation Rates (Kinetics) 750

13.7 Corrosion Control 752

13.7.1 Materials Selection 752

13.7.2 Coatings 753

13.7.3 Design 754

13.7.4 Alteration of Environment 755

13.7.5 Cathodic and Anodic Protection 756

13.8 Summary 758

13.9 Definitions 758

13.10 Problems 759

13.11 Materials Selection and DesignProblems 764

CHAPTER 14 Electrical Properties of Materials 766

14.1 Electrical Conduction in Metals 767

14.1.1 The Classical Model for ElectricalConduction in Metals 767

14.1.2 Ohm's Law 769

14.1.3 Drift Velocity of Electrons in al Conducting Metal 773

14.1.4 Electrical Resistivity of Metals 774

14.2 Energy-Band Model for ElectricalConduction 778

14.2.1 Energy-Band Model for Metals 778

14.2.2 Energy-Band Model for Insulators 780

14.3 Intrinsic Semiconductors 780

14.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 780

14.3.2 Electrical Charge Transport in theCrystal Lattice of Pure Silicon 781

14.3.3 Energy-Band Diagram for IntrinsicElemental Semiconductors 782

14.3.4 Quantitative Relationships for ElectricalConduction in Elemental IntrinsicSemiconductors 783

14.3.5 Effect of Temperature on IntrinsicSemiconductivity 785

14.4 Extrinsic Semiconductors 787

14.4.1 n-Type (Negative-Type) ExtrinsicSemiconductors 787

14.4.2 p-Type (Positive-Type) ExtrinsicSemiconductors 789

14.4.3 Doping of Extrinsic SiliconSemiconductor Material 791

14.4.4 Effect of Doping on CarrierConcentrations in ExtrinsicSemiconductors 791

14.4.5 Effect of Total Ionized ImpurityConcentration on the Mobility ofCharge Carriers in Silicon at RoomTemperature 794

14.4.6 Effect of Temperature on the ElectricalConductivity of ExtrinsicSemiconductors 795

14.5 Semiconductor Devices 797

14.5.1 The pn Junction 798

14.5.2 Some Application for pn JunctionDiodes 801

14.5.3 The Bipolar Junction Transistor 803

14.6 Microelectronics 804

14.6.1 Microelectronic Planar BipolarTransistors 806

14.6.2 Microelectronic Planar Field-EffectTransistors 807

14.6.3 Fabrication of MicroelectronicIntegrated Circuits 809

14.7 Compound Semiconductors 816

14.8 Electrical Properties of Ceramics 819

14.8.1 Basic Properties of Dielectrics 819

14.8.2 Ceramic Insulator Materials 822

14.8.3 Ceramic Materials far Capacitors 823

14.8.4 Ceramic Semiconductors 824

14.8.5 Ferroelectric Ceramics 826

14.9 Nanoelectronics 829

14.10 Summary 830

14.11 Definitions 831

14.12 Problems 834

14.13 Materials Selection and DesignProblems 838

CHAPTER 15 Optical Properties andSuperconductive Materials 840

15.1 Introduction 841

15.2 Light and the ElectromagneticSpectrum 841

15.3 Refraction of Light 844

15.3.1 Index of refraction 844

15.3.2 Snell's Law of Light Refraction 845

15.4 Absorption, Transmission, and Reflection ofLight 847

15.4.1 Metals 847

15.4.2 Silicate Glasses 847

15.4.3 Plastics 850

15.4.4 Semiconductors 850

15.5 Luminescence 851

15.5.1 Photoluminescence 852

15.5.2 Cathodoluminescence 852

15.6 Stimulated Emission of Radiation andLasers 854

15.6.1 Types of Lasers 856

15.7 Optical Fibers 858

15.7.1 Light Loss in Optical Fibers 858

15.7.2 Single-Mode and Multimode OpticalFibers 859

15.7.3 Fabrication of Optical Fibers 860

15.7.4 Modern Optical-Fiber CommunicationSystems 862

15.8 Superconducting Materials 863

15.8.1 The Superconducting State 863

15.8.2 Magnetic Properties ofSuperconductors 864

15.8.3 Current Flow and Magnetic Fields inSuperconductors 866

15.8.4 High-Current, High-FieldSuperconductors 867

15.8.5 High Critical Temperature (Tc)Superconducting Oxides 869

15.9 Definitions 871

15.10 Problems 872

15.11 Materials Selection and DesignProblems 874

CHAPTER 16 Magnetic Properties 888

16.1 Introduction 889

16.2 Magnetic Fields and Quantities 889

16.2.1 Magnetic Fields 889

16.2.2 Magnetic Induction 892

16.2.3 Magnetic Permeability 892

16.2.4 Magnetic Susceptibility 894

16.3 Types of Magnetism 882

16.3.1 Diamagnetism 883

16.3.2 Paramagnetism 883

16.3.3 Ferromagnetism 883

16.3.4 Magnetic Moment of a Single UnpairedAtomic Electron 885

16.3.5 Antiferromagnetism 887

16.3.6 Ferrimagnetism 887

16.4 Effect of Temperature onFerromagnetism 887

16.5 Ferromagnetic Domains 888

16.6 Types of Energies That Determine theStructure of FerromagneticDomains 890

16.6.1 Exchange Energy 890

16.6.2 Magnetostatic Energy 891

16.6.3 Magnetocrystalline AnisotropyEnergy 891

16.6.4 Domain Wall Energy 892

16.6.5 Magnetostrictive Energy 893

16.7 The Magnetization and Demagnetization ofa Ferromagnetic Metal 895

16.8 Soft Magnetic Materials 896

16.8.1 Desirable Properties for Soft MagneticMaterials 897

16.8.2 Energy Losses for Soft MagneticMaterials 897

16.8.3 Iron-Silicon Alloys 898

16.8.4 Metallic Glasses 899

16.8.5 Nickel-Iron Alloys 900

16.9 Hard Magnetic Materials 903

16.9.1 Properties of Hard MagneticMaterials 903

16.9.2 Alnico Alloys 905

16.9.3 Rare earth Alloys 907

16.9.4 Neodymium-Iron-Boron MagneticAlloys 909

16.9.5 Iron-Chromium-Cobalt MagneticAlloys 909

16.10 Ferrites 911

16.10.1 Magnetically Soft Ferrites 923

16.10.2 Magnetically Hard Ferrites 928

16.11 Summary 916

16.12 Definitions 917

16.13 Problems 920

16.14 Materials Selection and DesignProblems 924

APPENDIX Ⅰ Important Properties ofSelected Engineering Materials 925

APPENDIX Ⅱ Some Properties ofSelected Elements 980

APPENDIX Ⅲ Ionic Radii of the Elements 982

APPENDIX Ⅳ Selected Physical Quantitiesand Their Units 985

References for Further Study byChapter 987

Glossary 990

Answers 1001

ndex 1004

精品推荐