图书介绍
foundations of materials science and engineeringpdf电子书版本下载
- 著
- 出版社:
- ISBN:
- 出版时间:未知
- 标注页数:0页
- 文件大小:229MB
- 文件页数:1045页
- 主题词:
PDF下载
下载说明
foundations of materials science and engineeringPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Introduction to Materials Scienceand Engineering 2
1.1 Materials and Engineering 3
1.2 Materials Science and Engineering 6
1.3 Types of Materials 8
1.3.1 Metallic materials 8
1.3.2 Polymeric Materials 10
1.3.3 Ceramic Materials 11
1.3.4 Composite Materials 13
1.3.5 Electronic Materials 15
1.4 Competition Among Materials 16
1.5 Recent Advances in Materials Science andTechnology and Future Trends 18
1.5.1 Smart Materials 18
1.5.2 Nanomaterials 19
1.6 Design and Selection 20
1.7 Summary 21
1.8 Delinitions 21
1.9 Problems 22
1.10 Materials Selection and DesignProblems 23
CHAPTER 2 Atomic Structure and Bonding 24
2.1 The Structure of Atoms 25
2.2 Atomic Numbers and Atomic Masses 26
2.2.1 Atomic Numbers 26
2.2.2 Atomic Masses 26
2.3 The Electronic Structure of Atoms 29
2.3.1 The Hydrogen Atom 29
2.3.2 Quantum Numbers of Electrons ofAtoms 33
2.3.3 Electronic Structure of MultielectronAtoms 35
2.3.4 Electronic Structure and ChemicalReactivity 39
2.4 Types of Atomic and MolecularBonds 41
2.4.1 Primary Atomic Bonds 42
2.4.2 Secondarv Atomic and MolecularBonds 42
2.5 Ionic Bonding 42
2.5.1 Ionic Bonding in General 42
2.5.2 Interionic Forces for an Ion Pair 43
2.5.3 Interionic Energies for an Ion Pair 46
2.5.4 Ion Arrangements in Ionic Solids 47
2.5.5 Bonding Energies of Ionic Solids 48
2.6 Covalent Bonding 49
2.6.1 Covalent Bonding in the HydrogenMolecule 49
2.6.2 Covalent Bonding in Other DiatomicMolecules 50
2.6.3 Covalent Bonding by Carbon 51
2.6.4 Covalent Bonding in Carbon-ContainingMolecules 53
2.6.5 Benzene 53
2.7 Metallic Bonding 55
2.8 Secondary Bonding 59
2.8.1 Fluctuating Dipoles 60
2.8.2 Permanent Dipoles 61
2.9 Mixed Bonding 62
2.9.1 Ionic-Covalent Mixed Bonding 62
2.9.2 Metallic-Covalent Mixed Bonding 63
2.9.3 Metallic-Ionic Mixed Bonding 64
2.10 Summary 64
2.11 Definitions 65
2.12 Problems 66
2.13 Materials Selection and DesignProblems 70
CHAPTER 3 Crystal and AmorphousStructure in Materials 72
3.1 The Space Lattice and Unit Cells 73
3.2 Crystal Systems and BravaisLattices 74
3.3 Principal Metallic CrystalStructures 75
3.3.1 Bodv-Centered Cubic (BCC) CrystalStructure 77
3.3.2 Face-Centered Cubic (FCC) CrystalStructure 80
3.3.3 Hexagonal Close-Packed (HCP) CrystalStructure 81
3.4 Atom Positions in Cubic Unit Cells 83
3.5 Directions in Cubic Unit Cells 84
3.6 Miller Indices for Crystallographic Planes inCubic Unit Cells 88
3.7 Crystallographic Planes and Directions inHexagonal Crystal Structure 93
3.7.1 Indices for Crystal Planes in HCP UnitCells 93
3.7.2 Direction Indices in HCP UnitCells 94
3.8 Comparison of FCC, HCP, and BCC CrystalStructures 96
3.8.1 FCC and HCP Crystal Structures 96
3.8.2 BCC Crystal Structuty 98
3.9 Volume, Planar, and Linear Density Unit-Cell Calculations 98
3.9.1 Volume Density 98
3.9.2 PlanarAtomic Density 99
3.9.3 Linear Atomic Density 101
3.10 Polymorphism or Allotropy 102
3.11 Crystal Structure Analysis 103
3.11.1 X-Ray Sources 104
3.11.2 X-Ray Diffraction 105
3.11.3 X-Ray Diffraction Analysis of CrystalStructures 107
3.12 Amorphous Materials 113
3.13 Summary 114
3.14 Definitions 115
3.15 Problems 116
3.16 Materials Selection and DesignProblems 122
CHAPTER 4 Solidification and CrystallineImperfections 124
4.1 Solidification of Metals 125
4.1.1 The Formation of Stable Nuclei in LiquidMetals 127
4.1.2 Growth of Crystals in Liquid Metal andFormation of a Grain Structure 132
4.1.3 Grain Structure of IndustrialCastings 133
4.2 Solidification of Single Crystals 134
4.3 Metallic Solid Solutions 138
4.3.1 Substitutional Solid Solutions 139
4.3.2 Interstitial Solid Solutions 141
4.4 Crystalline Imperfections 143
4.4.1 Point Defects 143
4.4.2 Line Defects (Dislocations) 144
4.4.3 Planar Defects 147
4.4.4 Volume Defects 150
4.5 Experimental Techniques for Identificationof Microstructure and Defects 151
4.5.1 Optical Metallography, ASTM Grain Size,and Grain Diameter Determination 151
4.5.2 Scanning Electron Microscopy(SEM) 156
4.5.3 Transmission Electron Microscopy(TEM) 158
4.5.4 High-Resolution Transmission ElectronMicroscopy (HRTEM) 159
4.5.5 Scanning Probe Microscopes and AtomicResolution 161
4.6 Summary 166
4.7 Definitions 166
4.8 Problems 168
4.9 Materials Selection and DesignProblems 170
CHAPTER 5 Thermally Activated Processes andDiffusiop in Solids 172
5.1 Rate Processes in Solids 173
5.2 Atomic Diffusion in Solids 177
5.2.1 Diffusion in Solids in General 177
5.2.2 Diffusion Mechanisms 177
5.2.3 Steady-State Diffusion 180
5.2.4 Non-Steady-State Diffusion 182
5.3 Industrial Applications of DiffusionProcesses 184
5.3.1 Case Hardening of Steel by Gas Carburizing 184
5.3.2 Impurity Diffusion into Silicon Wafers forIntegrated Circuits 188
5.4 Effect of Temperature on Diffusion inSolids 191
5.5 Summary 195
5.6 Definitions 195
5.7 Problems 196
5.8 Materials Selection and DesignProblems 198
CHAPTER 6 Mechanical Properties ofMetals Ⅰ 200
6.1 The Processing of Metals and Alloys 201
6.1.1 The Casting of Metals and Alloys 201
6.1.2 Hot and Cold Rolling of Metals andAlloys 203
6.1.3 Extrusion of Metals and Alloys 208
6.1.4 Forging 209
6.1.5 Other Metal-Forming Processes 211
6.2 Stress and Strain in Metals 212
6.2.1 Elastic and Plastic Deformation 213
6.2.2 Engineering Stress and EngineeringStrain 213
6.2.3 Poisson's Ratio 216
6.2.4 Shear Stress and Shear Strain 216
6.3 The Tensile Test and the Engineering Stress-Strain Diagram 217
6.3.1 Mechanical Property Data Obtained from the Tensile Test and the EngineeringStress-Strain Diagram 220
6.3.2 Comparison of Engineering Stress-StrainCurves for Selected Alloys 225
6.3.3 True Stress and True Strain 225
6.4 Hardness and Hardness Testing 227
6.5 Plastic Deformation of Metal SingleCrystals 229
6.5.1 Slipbands and Slip Lines on the Surface ofMetal Crystals 229
6.5.2 Plastic Deformation in Metal Crystals by the Slip Mechanism 232
6.5.3 Slip Systems 234
6.5.4 Critical Resolved Shear Stress for MetalSingle Crystals 235
6.5.5 Schmid's Law 237
6.5.6 Twinning 240
6.6 Plastic Deformation of PolycrystallineMetals 242
6.6.1 Effect of Grain Boundaries on the Strengthof Metals 242
6.6.2 Effect of Plastic Deformation onGrain Shape and DislocationArrangements 244
6.6.3 Effect of Cold Plastic Deformation onIncreasing the Strength of Metals 246
6.7 Solid-Solution Strengthening of Metals 247
6.8 Recovery and Recrystallization ofPlastically Deformed Metals 249
6.8.1 Structure of a Heavily Cold-Worked Metal before Reheating 250
6.8.2 Recoverv 251
6.8.3 Recrvstallization 252
6.9 Superplasticity in Metals 257
6.10 Nanocrystalline Metals 259
6.11 Summary 261
6.12 Definitions 262
6.13 Problems 263
6.14 Materials Selection and DesignProblems 268
CHAPTER 7 Mechanical Properties ofMetals Ⅱ 270
7.1 Fracture of Metals 271
7.1.1 Ductile Fracture 272
7.1.2 Brittle Fracture 273
7.1.3 Toughness and Impact Testing 276
7.1.4 Ductile to Brittle TransitionTemperature 276
7.1.5 Fracture Toughness 279
7.2 Fatigue of Metals 281
7.2.1 Cyclic Stresses 285
7.2.2 Basic Structural Changes that Occur in a Ductile Metal in the FatigueProcess 286
7.2.3 Some Major Factors that Affect theFatigue Strength of a Metal 287
7.3 Fatigue Crack Propagation Rate 288
7.3.1 Correlation of Fatigue CrackPropagation with Stress and CrackLength 288
7.3.2 Fatigue Crack Growth Rate versus Stress-Intensity Factor Range Plots 290
7.3.3 Fatigue Lifee Calculations 292
7.4 Creep and Stress Rupture of Metals 294
7.4.1 Creep of Metals 294
7.4.2 The Creep Test 296
7.4.3 Creep-Rupture Test 297
7.5 Graphical representation of Creep- andStress-Rupture Time-Temperature DataUsing the Larsen-Miller Parameter 298
7.6 A Case Study in Failure of MetallicComponents 300
7.7 Recent Advances and Future Directions inImproving the Mechanical Performance ofMetals 303
7.7.1 Improving Ductility and StrengthSimultaneously 303
7.7.2 Fatigue Behavior in Nanocrystalline Metals 305
7.8 Summary 305
7.9 Definitions 306
7.10 Problems 307
7.11 Materials Selection and DesignProblems 309
CHAPTER 8 Phase Diagrams 310
8.1 Phase Diagrams of Pure Substances 311
8.2 Gibbs Phase Rule 313
8.3 Cooling Curves 314
8.4 Binary Isomorphous Alloy Systems 315
8.5 The Lever Rule 318
8.6 Nonequilibrium Solidification of Alloys 322
8.7 Binary Eutectic Alloy Systems 326
8.8 Binary Peritectic Alloy Systems 333
8.9 Binary Monotectic Systems 338
8.10 Invariant Reactions 339
8.11 Phase Diagrams with Intermediate Phasesand Compounds 341
8.12 Ternary Phase Diagrams 345
8.13 Summary 348
8.14 Dernnitions 349
8.15 Problems 351
8.16 Materials Selection and DesignProblems 355
CHAPTER 9 Engineering Alloys 358
9.1 Production of Iron and Steel 360
9.1.1 Production of Pig Iron in a BlastFurnace 360
9.1.2 Steelmaking and Processing of Major SteelProduct Forms 361
9.2 The Iron-Iron-Carbide System 363
9.2.1 The Iron-Iron-Carbide PhaseDiagram 363
9.2.2 Solid Phases in the Fe-Fe3C PhaseDiagram 363
9.2.3 Invariant Reactions in the Fe-Fe3C PhaseDiagram 364
9.2.4 Slow Cooling of Plain-Carbon Steels 366
9.3 Heat Treatment of Plain-CarbonSteels 373
9.3.1 Martensite 373
9.3.2 Isothermal Decomposition ofAustenite 378
9.3.3 Continuous-Cooling TransformationDiagram for a Eutectoid Plain-CarbonSteel 383
9.3.4 Annealing and Normalizing of Plain-Carbon Steels 386
9.3.5 Tempering of Plain-Carbon Steels 387
9.3.6 Classification of Plain-Carbon Steels andTypical Mechanical Properties 391
9.4 Low-Alloy Steels 392
9.4.1 Classification of Alloy Steels 392
9.4.2 Distribution of Alloying Elements in AlloySteels 394
9.4.3 Effects of Alloying Elements on theEutectoid Temperature of Steels 395
9.4.4 Hardenability 396
9.4.5 Typical Mechanical Properties andApplications for Low-Alloy Steels 401
9.5 Aluminum Alloys 401
9.5.1 Precipitation Strengthening(Hardening) 403
9.5.2 General Properties of Aluminum and ItsProduction 410
9.5.3 Wrought Aluminum Alloys 411
9.5.4 Aluminum Casting Alloys 416
9.6 Copper Alloys 418
9.6.1 General Properties of Copper 418
9.6.2 Production of Copper 419
9.6.3 Classification of Copper Alloys 419
9.6.4 Wrought Copper Alloys 422
9.7 Stainless Steels 424
9.7.1 Ferritic Stainless Steels 424
9.7.2 Martensitic Stainless Steels 425
9.7.3 Austenitic Stainless Steels 427
9.8 Cast Irons 429
9.8.1 General Properties 429
9.8.2 Types of Cast Irons 429
9.8.3 White Cast Iron 429
9.8.4 Gray Cast Iron 431
9.8.5 Ductile Cast Irons 432
9.8.6 Malleable Cast Irons 435
9.9 Magnesium, Titanium, and NickelAlloys 436
9.9.1 Magnesium Alloys 436
9.9.2 Titanium Alloys 438
9.9.3 Nickel Alloys 440
9.10 Special-Purpose Alloys andApplications 441
9.10.1 Intermetallics 441
9.10.2 Shape-Memory Alloys 442
9.10.3 Amorphous Metals 446
9.11 Metals in Biomedical Applications—Biometals 448
9.11.1 Stainless Steels 449
9.11.2 Cobalt-Based Alloys 449
9.11.3 Titanium Alloys 451
9.12 Some Issues in the Orthopedic Application of Metals 452
9.13 Summary 454
9.14 Definitions 455
9.15 Problems 457
9.16 Materials Selection and DesignProblems 465
CHAPTER 10 Polymeric Materials 468
10.1 Introduction 469
10.2 Polymerization Reactions 471
10.2.1 Covalent Bonding Structure of anEthylene Molecule 471
10.2.2 Covalent Bonding Structure of an Activated Ethylene Molecule 472
10.2.3 General Reaction for the Polymerization of Polyethylene and the Degree ofPolvmerization 473
10.2.4 Chain Polymerization Steps 473
10.2.5 Average Molecular Weight forThermoplastics 475
10.2.6 Functionality of a Monomer 476
10.2.7 Structure of Noncrystalline LinearPolymers 476
10.2.8 Vinyl and Vinylidene Polymers 478
10.2.9 Homopolymers and Copolymers 479
10.2.10 Other Methods of Polymerization 482
10.3 Industrial Polymerization Methods 484
10.4 Crystallinity and Stereoisomerism in SomeThermoplastics 486
10.4.1 Solidification of NoncrystallineThermoplastics 486
10.4.2 Solidification of Partly CrystallineThermoplastics 486
10.4.3 Structure of Partly CrystallineThermoplastic Materials 488
10.4.4 Stereoisomerism in Thermoplastics 489
10.4.5 Ziegler and Natta Catalysts 490
10.5 Processing of Plastic Materials 491
10.5.1 Processes Used for ThermoplasticMaterials 492
10.5.2 Processes Used for ThermosettingMaterials 496
10.6 General-Purpose Thermoplastics 498
10.6.1 Polyethylene 500
10.6.2 Polyvinyl Chloride and Copolymers 503
10.6.3 Polypropylene 505
10.6.4 Polvstvrene 505
10.6.5 Polvacrvlonitrile 506
10.6.6 Styrene-Acrylonitrile (SAN) 507
10.6.7 ABS 507
10.6.8 Polymethyl Methacrylate (PMMA) 509
10.6.9 Fluoroplastics 510
10.7 Engineering Thermoplastics 511
10.7.1 Polyamides (Nylons) 512
10.7.2 Polycarbonate 515
10.7.3 Phenylene Oxide-Based Resins 516
10.7.4 Acetals 517
10.7.5 Thermoplastic Polyesters 518
10.7.6 Polyphenylene Sulfide 519
10.7.7 Polvetherimide 520
10.7.8 PolvmerAllovs 521
10.8 Thermosetting Plastics (Thermosets) 521
10.8.1 Phenolics 523
10.8.2 Epoxy Resins 525
10.8.3 Unsaturated Polyesters 527
10.8.4 Amino Resins (Ureas andMelamines) 529
10.9 Elastomers (Rubbers) 531
10.9.1 Natural Rubber 531
10.9.2 Synthetic Rubbers 534
10.9.3 Properties of PolychloropreneElastomers 536
10.9.4 Vulcanization of PolychloropreneElastomers 536
10.10 Deformation and Strengthening of PlasticMaterials 539
10.10.1 Deformation Mechanisms forThermoplastics 539
10.10.2 Strengthening of Thermoplastics 541
10.10.3 Strengthening of ThermosettingPlastics 545
10.10.4 Effect of Temperature on the Strength ofPlastic Materials 545
10.11 Creep and Fracture of PolymericMaterials 546
10.11.1 Creep of Polymeric Materials 546
10.11.2 Stress Relaxation of PolymericMaterials 547
10.11.3 Fracture of PolymericMaterials 550
10.12 Polymers in Biomedical Applications—Biopolymers 552
10.12.1 Cardiovascular Applications ofPolymers 553
10.12.2 Ophthalmic Applications 554
10.12.3 Drug-Delivery Systems 555
10.12.4 Suture Materials 556
10.12.5 Orthopedic Applications 556
10.13 Summary 557
10.14 Definitions 558
10.15 Problems 560
10.16 Materials Selection and DesignProblems 570
CHAPTER 11 Ceramics 572
11.1 Introduction 573
11.2 Simple Ceramic CrystalStructures 575
11.2.1 Ionic and Covalent Bonding in SimpleCeramic Compounds 575
11.2.2 Simple Ionic Arrangements Found inlonically Bonded Solids 576
11.2.3 Cesium Chloride (CsCl) CrystalStructure 579
11.2.4 Sodium Chloride (NaCl) CrystalStructure 580
11.2.5 Interstitial Sites in FCC and HCP CrystalLattices 584
11.2.6 Zinc Blende (ZnS) CrystalStructure 586
11.2.7 Calcium Fluoride (CaF2) CrystalStructure 588
11.2.8 Antifluorite Crystal Structure 590
11.2.9 Corundum (Al2O3) CrystalStructure 590
11.2.10 Spinel (MgAl204) Crystal Structure 590
11.2.11 Perovskite (CaTiO3) Crystal Structure 590
11.2.12 Carbon and Its Allotropes 591
11.3 Silicate Structures 595
11.3.1 Basic Structural Unit of the SilicateStructures 595
11.3.2 Island, Chain, and Ring Structures ofSilicates 595
11.3.3 Sheet Structures of Silicates 595
11.3.4 Silicate Networks 597
11.4 Processing of Ceramics 598
11.4.1 Materials Preparation 599
11.4.2 Forming 599
11.4.3 Thermal Treatments 604
11.5 Traditional and EngineeringCeramics 606
11.5.1 Traditional Ceramics 606
11.5.2 Engineering Ceramics 609
11.6 Mechanical Properties of Ceramics 611
11.6.1 General 611
11.6.2 Mechanisms for the Deformation of Ceramic Materials 611
11.6.3 Factors Affecting the Strength of CeramicMaterials 612
11.6.4 Toughness of Ceramic Materials 613
11.6.5 Transformation Toughening of PartiallyStabilized Zirconia (PSZ) 615
11.6.6 Fatigue Failure of Ceramics 615
11.6.7 Ceramic Abrasive Materials 617
11.7 Thermal Properties of Ceramics 618
11.7.1 Ceramic Refractory Materials 619
11.7.2 Acidic Refractories 620
11.7.3 Basic Refractories 620
11.7.4 Ceramic Tile Insulation for the SpaceShuttle Orbiter 620
11.8 Glasses 620
11.8.1 Definition of a Glass 622
11.8.2 Glass Transition Temperature 622
11.8.3 Structure of Glasses 623
11.8.4 Composition of Glasses 624
11.8.5 Viscous Deformation of Glasses 626
11.8.6 Forming Methods for Glasses 628
11.8.7 Tempered Glass 630
11.8.8 Chemically Strengthened Glass 630
11.9 Ceramic Coatings and SurfaceEngineering 632
11.9.1 Silicate Glasses 632
11.9.2 Oxides and Carbides 632
11.10 Ceramics in Biomedical Applications 634
11.10.1 Alumina in OrthopedicImplants 634
11.10.2 Alumina in Dental Implants 636
11.10.3 Ceramic Implants and TissueConnectivity 636
11.11 Nanotechnology and Ceramics 637
11.12 Summary 639
11.13 Definitions 640
11.14 Problems 642
11.15 Materials Selection and DesignProblems 646
CHAPTER 12 Composite Materials 648
12.1 Introduction 649
12.2 Fibers for Reinforced-Plastic CompositeMaterials 651
12.2.1 Glass Fibers for Reinforcing PlasticResins 651
12.2.2 Carbon Fibers for ReinforcedPlastics 653
12.2.3 Aramid Fibers for Reinforcing PlasticResins 654
12.2.4 Comparison of Mechanical Propertiesof Carbon, Aramid, and Glass Fibersfor Reinforced-Plastic CompositeMaterials 655
12.3 Fiber-Reinforced-Plastic CompositeMaterials 657
12.3.1 Matrix Materials for Fiber-ReinforcedPlastic Composite Materials 657
12.3.2 Fiber-Reinforced-Plastic CompositeMaterials 658
12.3.3 Equations for Elastic Modulus of aLamellar Continuous-Fiber-PlasticMatrix Composite for Isostrain andIsostress Conditions 662
12.4 Open-Mold Processes for Fiber-Reinforced-Plastic Composite Materials 667
12.4.1 Hand Lay-Up Process 667
12.4.2 Spray-Up Process 667
12.4.3 Vacuum Bag-Autoclave Process 668
12.4.4 Filament-Winding Process 670
12.5 Closed-Mold Processes for Fiber-ReinforcedPlastic Composite Materials 672
12.5.1 Compression and Injection Molding 672
12.5.2 The Sheet-Molding Compound (SMC)Process 672
12.5.3 Continuous-Prorusion Process 674
12.6 Concrete 674
12.6.1 Portland Cement 675
12.6.2 Mixing Water for Concrete 678
12.6.3 Aggregates for Concrete 679
12.6.4 Air Entrainment 679
12.6.5 Compressive Strength of Concrete 679
12.6.6 Proportioning of Concrete Mixtures 679
12.6.7 Reinfoorced and Prestressed Concrete 682
12.6.8 Prestressed Concrete 683
12.7 Sandwich Structures 684
12.7.1 Honeycomb Sandwich Structure 684
12.7.2 Cladded Metal Structures 685
12.8 Metal-Matrix and Ceramic-MatrixComposites 685
12.8.1 Metal-Matrix Composites (MMCs) 685
12.8.2 Ceramic-Matrix Composites(CMCs) 689
12.8.3 Ceramic Composites andNanotechnology 692
12.9 Bone: A Natural Composite Material 692
12.9.1 Composition 692
12.9.2 Macrostructure 692
12.9.3 Mechanical Properties 694
12.9.4 Biomechanics of Bone Fracture 695
12.9.5 Viscoelasticity of the Bone 696
12.9.6 Bone Remodeling 696
12.9.7 Nanotechnology and Bone Repair 697
12.10 Summary 697
12.11 Definitions 698
12.12 Problems 700
12.13 Materials Selection and DesignProblems 704
CHAPTER 13 Corrosion 706
13.1 General 707
13.2 Electrochemical Corrosion of Metals 708
13.2.1 Oxidation-Reduction Reactions 708
13.2.2 Standard Electde Half-Cell Potentialsfor Metals 710
13.3 Galvanic Cells 712
13.3.1 Macroscopic Galvanic Cells withElectrolytes That Are One Molar 712
13.3.2 Galvanic Cells with Electrolytes That AreNot One Molar 714
13.3.3 Galvanic Cells with Acid or Alkalinefor Metals Electrolytes with No Metal IonsPresent 715
13.3.4 Microscopic Galvanic Cell Corrosion ofSingle Electrodes 717
13.3.5 Concentration Galvanic Cells 718
13.3.6 Galvanic Cells Created by Differences inComposition, Structure, and Stress 721
13.4 Corrosion Rates (Kinetics) 723
13.4.1 Rate of Uniform Corrosion orElectroplating of a Metal in an AqueousSolution 724
13.4.2 Corrosion Reactions and Polarization 727
13.4.3 Passivation 730
13.4.4 The Galvanic Series 731
13.5 Types of Corrosion 733
13.5.1 Uniform or General Attack Corrosion 733
13.5.2 Galvanic or Two-Metal Corrosion 733
13.5.3 Pitting Corrosion 734
13.5.4 Crevice Corrosion 737
13.5.5 lntergranular Corrosion 739
13.5.6 Stress Corrosion 741
13.5.7 Erosion Corrosion 744
13.5.8 Cavitation Damage 744
13.5.9 Fretting Corrosion 745
13.5.10 Selective Leaching 745
13.5.11 Hydrogen Damage 746
13.6 Oxidation of Metals 747
13.6.1 Protective Oxide Films 747
13.6.2 Mechanisms of Oxidation 749
13.6.3 Oxidation Rates (Kinetics) 750
13.7 Corrosion Control 752
13.7.1 Materials Selection 752
13.7.2 Coatings 753
13.7.3 Design 754
13.7.4 Alteration of Environment 755
13.7.5 Cathodic and Anodic Protection 756
13.8 Summary 758
13.9 Definitions 758
13.10 Problems 759
13.11 Materials Selection and DesignProblems 764
CHAPTER 14 Electrical Properties of Materials 766
14.1 Electrical Conduction in Metals 767
14.1.1 The Classical Model for ElectricalConduction in Metals 767
14.1.2 Ohm's Law 769
14.1.3 Drift Velocity of Electrons in al Conducting Metal 773
14.1.4 Electrical Resistivity of Metals 774
14.2 Energy-Band Model for ElectricalConduction 778
14.2.1 Energy-Band Model for Metals 778
14.2.2 Energy-Band Model for Insulators 780
14.3 Intrinsic Semiconductors 780
14.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 780
14.3.2 Electrical Charge Transport in theCrystal Lattice of Pure Silicon 781
14.3.3 Energy-Band Diagram for IntrinsicElemental Semiconductors 782
14.3.4 Quantitative Relationships for ElectricalConduction in Elemental IntrinsicSemiconductors 783
14.3.5 Effect of Temperature on IntrinsicSemiconductivity 785
14.4 Extrinsic Semiconductors 787
14.4.1 n-Type (Negative-Type) ExtrinsicSemiconductors 787
14.4.2 p-Type (Positive-Type) ExtrinsicSemiconductors 789
14.4.3 Doping of Extrinsic SiliconSemiconductor Material 791
14.4.4 Effect of Doping on CarrierConcentrations in ExtrinsicSemiconductors 791
14.4.5 Effect of Total Ionized ImpurityConcentration on the Mobility ofCharge Carriers in Silicon at RoomTemperature 794
14.4.6 Effect of Temperature on the ElectricalConductivity of ExtrinsicSemiconductors 795
14.5 Semiconductor Devices 797
14.5.1 The pn Junction 798
14.5.2 Some Application for pn JunctionDiodes 801
14.5.3 The Bipolar Junction Transistor 803
14.6 Microelectronics 804
14.6.1 Microelectronic Planar BipolarTransistors 806
14.6.2 Microelectronic Planar Field-EffectTransistors 807
14.6.3 Fabrication of MicroelectronicIntegrated Circuits 809
14.7 Compound Semiconductors 816
14.8 Electrical Properties of Ceramics 819
14.8.1 Basic Properties of Dielectrics 819
14.8.2 Ceramic Insulator Materials 822
14.8.3 Ceramic Materials far Capacitors 823
14.8.4 Ceramic Semiconductors 824
14.8.5 Ferroelectric Ceramics 826
14.9 Nanoelectronics 829
14.10 Summary 830
14.11 Definitions 831
14.12 Problems 834
14.13 Materials Selection and DesignProblems 838
CHAPTER 15 Optical Properties andSuperconductive Materials 840
15.1 Introduction 841
15.2 Light and the ElectromagneticSpectrum 841
15.3 Refraction of Light 844
15.3.1 Index of refraction 844
15.3.2 Snell's Law of Light Refraction 845
15.4 Absorption, Transmission, and Reflection ofLight 847
15.4.1 Metals 847
15.4.2 Silicate Glasses 847
15.4.3 Plastics 850
15.4.4 Semiconductors 850
15.5 Luminescence 851
15.5.1 Photoluminescence 852
15.5.2 Cathodoluminescence 852
15.6 Stimulated Emission of Radiation andLasers 854
15.6.1 Types of Lasers 856
15.7 Optical Fibers 858
15.7.1 Light Loss in Optical Fibers 858
15.7.2 Single-Mode and Multimode OpticalFibers 859
15.7.3 Fabrication of Optical Fibers 860
15.7.4 Modern Optical-Fiber CommunicationSystems 862
15.8 Superconducting Materials 863
15.8.1 The Superconducting State 863
15.8.2 Magnetic Properties ofSuperconductors 864
15.8.3 Current Flow and Magnetic Fields inSuperconductors 866
15.8.4 High-Current, High-FieldSuperconductors 867
15.8.5 High Critical Temperature (Tc)Superconducting Oxides 869
15.9 Definitions 871
15.10 Problems 872
15.11 Materials Selection and DesignProblems 874
CHAPTER 16 Magnetic Properties 888
16.1 Introduction 889
16.2 Magnetic Fields and Quantities 889
16.2.1 Magnetic Fields 889
16.2.2 Magnetic Induction 892
16.2.3 Magnetic Permeability 892
16.2.4 Magnetic Susceptibility 894
16.3 Types of Magnetism 882
16.3.1 Diamagnetism 883
16.3.2 Paramagnetism 883
16.3.3 Ferromagnetism 883
16.3.4 Magnetic Moment of a Single UnpairedAtomic Electron 885
16.3.5 Antiferromagnetism 887
16.3.6 Ferrimagnetism 887
16.4 Effect of Temperature onFerromagnetism 887
16.5 Ferromagnetic Domains 888
16.6 Types of Energies That Determine theStructure of FerromagneticDomains 890
16.6.1 Exchange Energy 890
16.6.2 Magnetostatic Energy 891
16.6.3 Magnetocrystalline AnisotropyEnergy 891
16.6.4 Domain Wall Energy 892
16.6.5 Magnetostrictive Energy 893
16.7 The Magnetization and Demagnetization ofa Ferromagnetic Metal 895
16.8 Soft Magnetic Materials 896
16.8.1 Desirable Properties for Soft MagneticMaterials 897
16.8.2 Energy Losses for Soft MagneticMaterials 897
16.8.3 Iron-Silicon Alloys 898
16.8.4 Metallic Glasses 899
16.8.5 Nickel-Iron Alloys 900
16.9 Hard Magnetic Materials 903
16.9.1 Properties of Hard MagneticMaterials 903
16.9.2 Alnico Alloys 905
16.9.3 Rare earth Alloys 907
16.9.4 Neodymium-Iron-Boron MagneticAlloys 909
16.9.5 Iron-Chromium-Cobalt MagneticAlloys 909
16.10 Ferrites 911
16.10.1 Magnetically Soft Ferrites 923
16.10.2 Magnetically Hard Ferrites 928
16.11 Summary 916
16.12 Definitions 917
16.13 Problems 920
16.14 Materials Selection and DesignProblems 924
APPENDIX Ⅰ Important Properties ofSelected Engineering Materials 925
APPENDIX Ⅱ Some Properties ofSelected Elements 980
APPENDIX Ⅲ Ionic Radii of the Elements 982
APPENDIX Ⅳ Selected Physical Quantitiesand Their Units 985
References for Further Study byChapter 987
Glossary 990
Answers 1001
ndex 1004