图书介绍

高等学校教学参考书 高等数学基础 (下册)pdf电子书版本下载

高等学校教学参考书  高等数学基础  (下册)
  • 李嘉耀 著
  • 出版社:
  • ISBN:
  • 出版时间:1981
  • 标注页数:0页
  • 文件大小:11MB
  • 文件页数:482页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

高等学校教学参考书 高等数学基础 (下册)PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

目 录 1

第五篇矢量代数基础与空间解析几何 1

第十章矢量代数基础 1

第一节矢量及其线性运算 2

§10.1 矢量的表示法及相等条件 2

§10.2 矢量的加法与减法 4

§10.3 矢量与实数相乘的定义及运算律 6

第二节空间直角坐标与矢量的坐标表达式 7

§10.4 投影的基本定理 7

§10.5 空间一点的直角坐标 10

§10.6 两点之间的距离定比分点的坐标 12

§10.7 矢量的坐标及其模与方向余弦的坐标表示式 14

§10.8 矢量的坐标表示式 16

第三节矢量的乘积 17

§10.9 两个矢量的标积及其性质 18

§10.10标积的坐标表示式两个矢量垂直的条件 23

§10.11两个矢量的矢积及其性质 24

§10.12矢积的坐标表示式两个矢量平行的条件 27

§10.13三个矢量的乘积 28

§10.14交错积的几何意义及性质 29

§10.15二重矢积的性质及计算法则 31

§11.1 平面方程的点法式 34

第十一章空间解析几何 34

第一节空间的平面与直线 34

§11.2 平面方程的一般式 35

§11.3 平面方程的截距式及法线式 37

§11.4 平面到一点的离差及距离 38

§11.5 两个平面的夹角及垂直或平行的条件…………………………3?§11.6 直线方程的各种形式 42

§11.7 两直线的夹角及平行或垂直的条件 44

§11.8 直线与平面的交角及交点 45

第二节曲面与空间曲线 47

§11.9 曲面方程 47

§11.10柱面与二次柱面 50

§11.11旋转曲面 52

§11.12空间曲线方程 54

第三节二次曲面 57

§11.13二次曲面的分类 57

§11.14研究二次曲面方程的轨迹的初等方法 59

§11.15椭球面 61

§11.16单叶双曲面 63

§11.17双叶双曲面 65

§11.18椭圆抛物面 66

§11.19双曲抛物面 67

§11.20锥面与二次锥面 69

§11.21二次曲面小结 71

第六篇多元函数微分学 73

第十二章基础知识 73

第一节多元函数的概念 73

§12.1 二元函数概念 73

§12.2 二元函数的几何表示法等值网 77

§12.3 n元函数与点函数 79

第二节多元函数的极限与连续 81

§12.4 极限概念 81

§12.5 函数的连续与间断 84

§12.6 连续函数的特性 85

第十三章多元函数微分法及其应用 87

第一节偏导数与全微分 87

§13.1偏导数及其几何意义 87

§13.2 高阶偏导数与求导次序问题 91

§13.3 全增量与全微分微小作用相加原理 96

§13.4 全微分的几何解释 103

§13.5 全微分在近似计算及误差估计上的应用 105

第二节复合函数及隐函数的求导法 108

§13.6 全导数公式 108

§13.7 复合函数求导法与全微分形式不变性 112

§13.8 由一个方程确定的隐函数及其求导法 117

§13.9 由方程组确定的隐函数求导法 121

§13.10由积分确定的函数及其求导公式 125

§13.11高阶全微分 133

§13.12二元函数的台劳公式 135

第三节偏导数的应用 137

§13.13空间曲线的切线方程及法面方程弧长 137

§13.14曲面的切面方程及法线方程 140

§13.15多元函数的极值 144

§13.16条件极值与拉格朗日乘数法 150

§13.17多元函数的最小值与最大值 157

§13.18隐示方程的曲线寻常点与奇异点 159

§13.19曲线族的包络 163

§13.20一阶微分方程的图解法方向场 168

第七篇多元函数积分学 172

第十四章重积分 172

第一节重积分的概念及性质 172

§14.1 引出二重积分概念的几何及物理问题 172

§14.2 二重积分的定义及存在定理 176

§14.3 三重积分的定义 177

§14.4 重积分的简单性质 179

§14.5 在直角坐标系中的计算法 181

第二节二重积分的计算法及应用 181

§14.6 在极坐标系中的计算法 197

§14.7 光滑曲面的面积 206

§14.8薄片的重心及转动惯量 211

第三节三重积分的计算法及应用 216

§14.9 引言 216

§14.10在直角坐标系中的计算法 219

§14.11在柱坐标系中的计算法 228

§14.12在球坐标系中的计算法 235

第一节曲线积分 240

第十五章曲线积分与曲面积分 240

§15.1 对弧长的曲线积分 241

§15.2 对坐标的曲线积分 250

§15.3 两种曲线积分的关系 258

§15.4 平面上曲线积分与二重积分的关系 259

§15.5 曲线积分的特性 264

§15.6 利用曲线积分求全微分的原函数 268

§15.7 在微分方程中的应用积分因子 270

§15.8 在物理上的应用 275

第二节曲面积分 280

§15.9 对面积的曲面积分与对坐标的曲面积分 280

§15.10曲面积分的基本性质及计算方法 286

§15.11曲面积分与三重积分的关系(奥氏公式) 289

§15.12曲面积分与曲面无关的条件 292

§15.13曲面积分与空间闭曲线积分的关系(斯氏公式) 293

§16.1 方向导数 293

第十六章场论基础 297

第一节方向导数与标量场的梯度 298

§16.2 标量场的梯度 301

第二节矢量场的散度与旋度 311

§16.3 散度的概念 311

§16.4 散度的表达式及其基本性质 314

§16.5 旋度的概念 320

§16.6 旋度的表达式及其基本性质 324

第三节 两个重要定理及曲线坐标系中的表达式 329

§16.7 矢量场的基本定理及其分类 329

§16.8 梯度、散度、旋度在曲线坐标系中的表达式 331

第八篇无穷级数与广义积分 336

第十七章数项级数与函数项级数 336

第一节数项级数 336

§17.1 级数的收敛与发散 336

§17.2 级数的基本性质 339

§17.3 级数收敛的必要条件 341

§17.4 同号级数判敛法 343

§17.5 交错级数判敛法 349

§17.6 异号级数的绝对收敛与条件收敛 352

第二节函数项级数 355

§17.7 函数项级数的收敛点与收敛域 355

§17.8 均匀收敛的概念 358

§17.9 均匀收敛的M判定法 362

§17.10匀敛级数的性质 365

第十八章幂级数与福里哀级数 370

第一节幂级数 370

§18.1 幂级数的收敛域及其求法收敛半径 370

§18.2 幂级数的四则运算及分析性质 373

§18.3 函数展为幂级数的台劳方法 378

§18.4 函数展开的应用 379

§18.5 函数展开的其它方法二项式级数 387

§18.6 微分方程的级数解及其存在问题 393

§18.7 贝塞尔函数(圆柱函数) 399

第二节福里哀级数 405

§18.8 三角级数 405

§18.9 三角函数组的正交性 406

§18.10福里哀公式与福里哀级数 408

§18.11狄里赫莱定理 412

§18.12偶函数与奇函数的福里哀级数 415

§18.13以2ι为周期的函数展为福里哀级数 418

§18.14函数在半区间(0,ι)上展为福里哀级数 419

§18.15福里哀级数的指数形式 424

§16.16经验函数的谐波分析法选数板 428

第十九章广义积分 436

第一节无穷积分的收敛与发散 437

§19.1 无穷积分的收敛与发散定义 437

§19.2 无穷积分判敛法 439

第二节无穷积分的均匀收敛 444

§19.3 均匀收敛及其判定法 444

§19.4 均匀收敛的应用 446

第三节瑕积分的收敛与发散 452

§19.5 瑕积分的收敛及发散定义 452

§19.6 瑕积分判敛法 453

第四节广义二重积分 456

§19.7 无界域的二重积分 457

§19.8 无界函数的二重积分 460

第五节Г函数与β函数 463

§19.9 Г函数 463

§19.10 β函数 466

附录 469

精品推荐