图书介绍

mechanical vibrationspdf电子书版本下载

mechanical vibrations
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:96MB
  • 文件页数:1146页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

mechanical vibrationsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Fundamentals of Vibration 1

1.1 Preliminary Remarks 2

1.2 Brief History of the Study of Vibration 3

1.2.1 Origins of the Study of Vibration 3

1.2.2 From Galileo to Rayleigh 5

1.2.3 Recent Contributions 8

1.3 Importance of the Study of Vibration 10

1.3.1 Conversion of Vibrations to Sound by the Human Ear 12

1.4 Basic Concepts of Vibration 15

1.4.1 Vibration 15

1.4.2 Elementary Parts of Vibrating Systems 15

1.4.3 Number of Degrees of Freedom 16

1.4.4 Discrete and Continuous Systems 18

1.5 Classification of Vibration 18

1.5.1 Free and Forced Vibration 18

1.5.2 Undamped and Damped Vibration 19

1.5.3 Linear and Nonlinear Vibration 19

1.5.4 Deterministic and Random Vibration 19

1.6 Vibration Analysis Procedure 20

1.7 Spring Elements 24

1.7.1 Nonlinear Springs 25

1.7.2 Linearization of a Nonlinear Spring 27

1.7.3 Spring Constants of Elastic Elements 29

1.7.4 Combination of Springs 32

1.7.5 Spring Constant Associated with the Restoring Force due to Gravity 40

1.8 Mass or Inertia Elements 41

1.8.1 Combination of Masses 42

1.9 Damping Elements 46

1.9.1 Construction of Viscous Dampers 47

1.9.2 Linearization of a Nonlinear Damper 53

1.9.3 Combination of Dampers 53

1.10 Harmonic Motion 55

1.10.1 Vectorial Representation of Harmonic Motion 57

1.10.2 Complex-Number Representation of Harmonic Motion 58

1.10.3 Complex Algebra 59

1.10.4 Operations on Harmonic Functions 59

1.10.5 Definitions and Terminology 62

1.11 Harmonic Analysis 65

1.11.1 Fourier Series Expansion 65

1.11.2 Complex Fourier Series 67

1.11.3 Frequency Spectrum 68

1.11.4 Time- and Frequency-Domain Representations 69

1.11.5 Even and Odd Functions 70

1.11.6 Half-Range Expansions 72

1.11.7 Numerical Computation of Coefficients 73

1.12 Examples Using MATLAB 77

1.13 Vibration Literature 81

Chapter Summary 82

References 82

Review Questions 84

Problems 88

Design Projects 121

CHAPTER 2 Free Vibration of Single-Degree-of-Freedom Systems 125

2.1 Introduction 127

2.2 Free Vibration of an Undamped Translational System 130

2.2.1 Equation of Motion Using Newton’s Second Law of Motion 130

2.2.2 Equation of Motion Using Other Methods 131

2.2.3 Equation of Motion of a Spring-Mass System in Vertical Position 133

2.2.4 Solution 134

2.2.5 Harmonic Motion 135

2.3 Free Vibration of an Undamped Torsional System 148

2.3.1 Equation of Motion 149

2.3.2 Solution 150

2.4 Response of First-Order Systems and Time Constant 153

2.5 Rayleigh’s Energy Method 155

2.6 Free Vibration with Viscous Damping 160

2.6.1 Equation of Motion 160

2.6.2 Solution 161

2.6.3 Logarithmic Decrement 170

2.6.4 Energy Dissipated in Viscous Damping 171

2.6.5 Torsional Systems with Viscous Damping 173

2.7 Graphical Representation of Characteristic Roots and Corresponding Solutions 179

2.7.1 Roots of the Characteristic Equation 179

2.7.2 Graphical Representation of Roots and Corresponding Solutions 180

2.8 Parameter Variations and Root Locus Representations 181

2.8.1 Interpretations of ωn,ωd,ζ,and τ in the s-plane 181

2.8.2 Root Locus and Parameter Variations 184

2.9 Free Vibration with Coulomb Damping 190

2.9.1 Equation of Motion 191

2.9.2 Solution 192

2.9.3 Torsional Systems with Coulomb Damping 195

2.10 Free Vibration with Hysteretic Damping 197

2.11 Stability of Systems 203

2.12 Examples Using MATLAB 207

Chapter Summary 213

References 214

Review Questions 214

Problems 219

Design Projects 266

CHAPTER3 Harmonically Excited Vibration 269

3.1 Introduction 271

3.2 Equation of Motion 271

3.3 Response of an Undamped System Under Harmonic Force 273

3.3.1 Total Response 277

3.3.2 Beating Phenomenon 277

3.4 Response of a Damped System Under Harmonic Force 281

3.4.1 Total Response 284

3.4.2 Quality Factor and Bandwidth 288

3.5 Response of a Damped System Under F(t) = F0eiωt 289

3.6 Response of a Damped System Under the Harmonic Motion of the Base 292

3.6.1 Force Transmitted 294

3.6.2 Relative Motion 295

3.7 Response of a Damped System Under Rotating Unbalance 298

3.8 Forced Vibration with Coulomb Damping 304

3.9 Forced Vibration with Hysteresis Damping 309

3.10 Forced Motion with Other Types of Damping 311

3.11 Self-Excitation and Stability Analysis 312

3.11.1 Dynamic Stability Analysis 312

3.11.2 Dynamic Instability Caused by Fluid Flow 316

3.12 Transfer-Function Approach 324

3.13 Solutions Using Laplace Transforms 328

3.14 Frequency Transfer Functions 331

3.14.1 Relation between the General Transfer Function T(s) and the Frequency Transfer Function T(iω) 333

3.14.2 Representation of Frequency-Response Characteristics 334

3.15 Examples Using MATLAB 337

Chapter Summary 343

References 343

Review Questions 344

Problems 347

Design Projects 374

CHAPTER 4 Vibration Under General Forcing Conditions 375

4.1 Introduction 376

4.2 Response Under a General Periodic Force 377

4.2.1 First-Order Systems 378

4.2.2 Second-Order Systems 384

4.3 Response Under a Periodic Force of Irregular Form 390

4.4 Response Under a Nonperiodic Force 392

4.5 Convolution Integral 393

4.5.1 Response to an Impulse 394

4.5.2 Response to a General Forcing Condition 397

4.5.3 Response to Base Excitation 398

4.6 Response Spectrum 406

4.6.1 Response Spectrum for Base Excitation 408

4.6.2 Earthquake Response Spectra 411

4.6.3 Design Under a Shock Environment 415

4.7 Laplace Transforms 418

4.7.1 Transient and Steady-State Responses 418

4.7.2 Response of First-Order Systems 419

4.7.3 Response of Second-Order Systems 421

4.7.4 Response to Step Force 426

4.7.5 Analysis of the Step Response 432

4.7.6 Description of Transient Response 433

4.8 Numerical Methods 439

4.8.1 Runge-Kutta Methods 441

4.9 Response to Irregular Forcing Conditions Using Numerical Methods 443

4.10 Examples Using MATLAB 448

Chapter Summary 452

References 452

Review Questions 453

Problems 456

Design Projects 478

CHAPTER5 Two-Degree-of-Freedom Systems 481

5.1 Introduction 482

5.2 Equations of Motion for ForcedV ibration 486

5.3 Free-Vibration Analysis of an Undamped System 488

5.4 Torsional System 497

5.5 Coordinate Coupling and Principal Coordinates 502

5.6 Forced-Vibration Analysis 508

5.7 Semidetinite Systems 511

5.8 Self-Excitation and Stability Analysis 514

5.9 Transfer-Function Approach 516

5.10 Solutions Using Laplace Transform 518

5.11 Solutions Using Frequency Transfer Functions 526

5.12 Examples Using MATLAB 529

Chapter Summary 536

References 537

Review Questions 537

Problems 540

Design Projects 566

CHAPTER 6 Multidegree-of-Freedom Systems 568

6.1 Introduction 570

6.2 Modeling of Continuous Systems as Multidegree-of-Freedom Systems 570

6.3 Using Newton’s Second Law to Derive Equations of Motion 572

6.4 Influence Coefficients 577

6.4.1 Stiffness Influence Coefficients 577

6.4.2 Flexibility Influence Coefficients 582

6.4.3 Inertia Influence Coefficients 587

6.5 Potential and Kinetic Energy Expressions in Matrix Form 589

6.6 Generalized Coordinates and Generalized Forces 591

6.7 Using Lagrange’s Equations to Derive Equations of Motion 592

6.8 Equations of Motion of Undamped Systems in Matrix Form 596

6.9 Eigenvalue Problem 598

6.10 Solution of the Eigenvalue Problem 600

6.10.1 Solution of the Characteristic(Polynomial)Equation 600

6.10.2 Orthogonality of Normal Modes 606

6.10.3 Repeated Eigenvalues 609

6.11 Expansion Theorem 611

6.12 Unrestrained Systems 611

6.13 Free Vibration of Undamped Systems 616

6.14 Forced Vibration of Undamped Systems Using Modal Analysis 618

6.15 Forced Vibration of Viscously Damped Systems 625

6.16 Self-Excitation and Stability Analysis 632

6.17 Examples Using MATLAB 634

Chapter Summary 642

References 642

Review Questions 643

Problems 647

Design Projects 668

CHAPTER7 Determination of Natural Frequencies and Mode Shapes 671

7.1 Introduction 672

7.2 Dunkerley’s Formula 673

7.3 Rayleigh’s Method 675

7.3.1 Properties of Rayleigh’s Quotient 676

7.3.2 Computation of the Fundamental Natural Frequency 678

7.3.3 Fundamental Frequency of Beams and Shafts 680

7.4 Holzer’s Method 683

7.4.1 Torsional Systems 683

7.4.2 Spring-Mass Systems 686

7.5 Matrix Iteration Method 687

7.5.1 Convergence to the Highest Natural Frequency 689

7.5.2 Computation of Intermediate Natural Frequencies 690

7.6 Jacobi’s Method 695

7.7 Standard Eigenvalue Problem 697

7.7.1 Choleski Decomposition 698

7.7.2 Other Solution Methods 700

7.8 Examples Using MATLAB 700

Chapter Summary 703

References 703

Review Questions 705

Problems 707

Design Projects 716

CHAPTER 8 Continuous Systems 717

8.1 Introduction 718

8.2 Transverse Vibration of a String or Cable 719

8.2.1 Equation of Motion 719

8.2.2 Initial and Boundary Conditions 721

8.2.3 Free Vibration of a Uniform String 722

8.2.4 Free Vibration of a String with Both Ends Fixed 723

8.2.5 Traveling-Wave Solution 727

8.3 Longitudinal Vibration of a Bar or Rod 728

8.3.1 Equation of Motion and Solution 728

8.3.2 Orthogonality of Normal Functions 731

8.4 Torsional Vibration of a Shaft or Rod 736

8.5 Lateral Vibration of Beams 739

8.5.1 Equation of Motion 739

8.5.2 Initial Conditions 741

8.5.3 Free Vibration 741

8.5.4 Boundary Conditions 742

8.5.5 Orthogonality of Normal Functions 744

8.5.6 Forced Vibration 748

8.5.7 Effect of Axial Force 750

8.5.8 Effects of Rotary Inertia and Shear Deformation 752

8.5.9 Beams on Elastic Foundation 757

8.5.10 Other Effects 760

8.6 Vibration of Membranes 760

8.6.1 Equation of Motion 760

8.6.2 Initial and Boundary Conditions 762

8.7 Rayleigh’s Method 763

8.8 The Rayleigh-Ritz Method 766

8.9 Examples Using MATLAB 769

Chapter Summary 772

References 772

Review Questions 774

Problems 777

Design Project 790

CHAPTER 9 Vibration Control 791

9.1 Introduction 792

9.2 Vibration Nomograph and Vibration Criteria 793

9.3 Reduction of Vibration at the Source 797

9.4 Balancing of Rotating Machines 798

9.4.1 Single-Plane Balancing 798

9.4.2 Two-Plane Balancing 801

9.5 Whirling of Rotating Shafts 807

9.5.1 Equations of Motion 807

9.5.2 Critical Speeds 809

9.5.3 Response of the System 810

9.5.4 Stability Analysis 812

9.6 Balancing of Reciprocating Engines 814

9.6.1 Unbalanced Forces Due to Fluctuations in Gas Pressure 814

9.6.2 Unbalanced Forces Due to Inertia of the Moving Parts 815

9.6.3 Balancing of Reciprocating Engines 818

9.7 Control of Vibration 820

9.8 Control of Natural Frequencies 820

9.9 Introduction of Damping 821

9.10 Vibration Isolation 823

9.10.1 Vibration Isolation System with Rigid Foundation 826

9.10.2 Vibration Isolation System with Base Motion 836

9.10.3 Vibration Isolation System with Flexible Foundation 844

9.10.4 Vibration Isolation System with Partially Flexible Foundation 846

9.10.5 Shock Isolation 847

9.10.6 Active Vibration Control 850

9.11 Vibration Absorbers 855

9.11.1 Undamped Dynamic Vibration Absorber 856

9.11.2 Damped Dynamic Vibration Absorber 863

9.12 Examples Using MATLAB 867

Chapter Summary 875

References 875

Review Questions 877

Problems 879

Design Project 894

CHAPTER 10 Vibration Measurement and Applications 896

10.1 Introduction 897

10.2 Transducers 899

10.2.1 Variable-Resistance Transducers 899

10.2.2 Piezoelectric Transducers 902

10.2.3 Electrodynamic Transducers 903

10.2.4 Linear Variable Differential Transformer Transducer 904

10.3 Vibration Pickups 905

10.3.1 Vibrometer 907

10.3.2 Accelerometer 908

10.3.3 Velometer 912

10.3.4 Phase Distortion 914

10.4 Frequency-Measuring Instruments 916

10.5 Vibration Exciters 918

10.5.1 Mechanical Exciters 918

10.5.2 Electrodynamic Shaker 919

10.6 Signal Analysis 921

10.6.1 Spectrum Analyzers 922

10.6.2 Bandpass Filter 923

10.6.3 Constant-Percent Bandwidth and Constant-Bandwidth Analyzers 924

10.7 Dynamic Testing of Machines and Structures 926

10.7.1 Using Operational Deflection-Shape Measurements 926

10.7.2 Using Modal Testing 926

10.8 Experimental Modal Analysis 926

10.8.1 The Basic Idea 926

10.8.2 The Necessary Equipment 926

10.8.3 Digital Signal Processing 929

10.8.4 Analysis of Random Signals 931

10.8.5 Determination of Modal Data from Observed Peaks 933

10.8.6 Determination of Modal Data from Nyquist Plot 936

10.8.7 Measurement of Mode Shapes 938

10.9 Machine-Condition Monitoring and Diagnosis 941

10.9.1 Vibration Severity Criteria 941

10.9.2 Machine Maintenance Techniques 941

10.9.3 Machine-Condition Monitoring Techniques 942

10.9.4 Vibration Monitoring Techniques 944

10.9.5 Instrumentation Systems 950

10.9.6 Choice of Monitoring Parameter 950

10.10 Examples Using MATLAB 951

Chapter Summary 954

References 954

Review Questions 956

Problems 958

Design Projects 964

CHAPTER 11 Numerical Integration Methods in Vibration Analysis 965

11.1 Introduction 966

11.2 Finite Difference Method 967

11.3 Central Difference Method for Single-Degree-of-Freedom Systems 968

11.4 Runge-Kutta Method for Single-Degree-of-Freedom Systems 971

11.5 Central Difference Method for Multidegree-of-Freedom Systems 973

11.6 Finite Difference Method for Continuous Systems 977

11.6.1 Longitudinal Vibration of Bars 977

11.6.2 Transverse Vibration of Beams 981

11.7 Runge-Kutta Method for Multidegree-of-Freedom Systems 986

11.8 Houbolt Method 988

11.9 Wilson Method 991

11.10 Newmark Method 994

11.11 Examples Using MATLAB 998

Chapter Summary 1004

References 1004

Review Questions 1005

Problems 1007

CHAPTER 12 Finite Element Method 1013

12.1 Introduction 1014

12.2 Equations of Motion of an Element 1015

12.3 Mass Matrix,Stiffness Matrix,and Force Vector 1017

12.3.1 Bar Element 1017

12.3.2 Torsion Element 1020

12.3.3 Beam Element 1021

12.4 Transformation of Element Matrices and Vectors 1024

12.5 Equations of Motion of the Complete System of Finite Elements 1027

12.6 Incorporation of Boundary Conditions 1029

12.7 Consistent- and Lumped-Mass Matrices 1038

12.7.1 Lumped-Mass Matrix for a Bar Element 1038

12.7.2 Lumped-Mass Matrix for a Beam Element 1038

12.7.3 Lumped-Mass Versus Consistent-Mass Matrices 1039

12.8 Examples Using MATLAB 1041

Chapter Summary 1045

References 1045

Review Questions 1046

Problems 1048

Design Projects 1060

APPENDIX A 1064

Mathematical Relations and Material Properties 1064

APPENDIX B 1067

Deflection of Beams and Plates 1067

APPENDIX C 1069

Matrices 1069

APPENDIX D 1076

Laplace Transform 1076

APPENDIX E 1084

Units 1084

APPENDIX F 1087

Introduction to MATLAB 1087

Answers to Selected Problems 1097

Index 1106

精品推荐