图书介绍

SOFT MATTER PHYSICS AN INTRODUCTIONpdf电子书版本下载

SOFT MATTER PHYSICS AN INTRODUCTION
  • MAURICE KLEMAN 著
  • 出版社: INC.
  • ISBN:
  • 出版时间:2003
  • 标注页数:0页
  • 文件大小:38MB
  • 文件页数:234页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

SOFT MATTER PHYSICS AN INTRODUCTIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Condensed Matter:General Characters,the Chemical Bond,and Particle Interactions 1

1.1.Entropy in Disordered Systems 2

1.2.Central Forces and Directional Forces Between Atoms 3

1.2.1.Metallic Bond 4

1.2.2.Bonds Formed by Fluctuating Dipoles 4

1.2.3.Covalent Bond 5

1.2.4.Ionic Bond 5

1.2.5.From Ionic Bond to Covalent Bond in Crystals 7

1.3.Forces Between Molecules 7

1.3.1.Electrostatic Bond in a Dielectric Medium 7

1.3.2.Electric Dipoles 8

1.3.3.Induced Dipoles,Polarizability 11

1.3.4.Repulsive Forces 13

1.3.5.Empirical Potentials of Interactions 18

1.3.6.Water,Hydrogen Bond,and Hydrophilic and Hydrophobic Effects 19

1.4.van der Waals Forces Between Macroscopic Particles 21

1.4.1.Pairwise Summation of Molecular Forces;Hamaker Constant 21

1.4.2.Retardation Effects 22

1.4.3.London Interactions in a Medium,Lifshitz Theory 27

1.4.4.Casimir Interactions 28

1.5.Polymers and Biological Molecules 29

1.5.1.Synthetic Polymers 29

1.5.2.Aminoacids,Proteins 31

1.5.3.DNA 36

1.5.4.Associations of Proteins:TMV,Microtubules 36

2 Atomic and Molecular Arrangements 42

2.1.Atomic Order 42

2.1.1.Packing Densities 42

2.1.2.Liquids and Amorphous Media 45

2.1.3.Geometrical Frustration 47

2.1.4.Incommensurate Phases and Quasicrystals 49

2.2.Molecular Order 53

2.2.1.Plastic Crystals 53

2.2.2.The Building Blocks of Liquid Crystals 55

2.2.3.Classification of the Mesomorphic Phases 59

2.2.4.Isotropic Phases 69

2.3.Perturbations of the Crystalline Order 71

2.3.1.Weak Perturbations 71

2.3.2.Strong Perturbations 72

3 The Order Parameter:Amplitude and Phase 76

3.1.The Order Parameter Space 77

3.1.1.Superfluid Helium 77

3.1.2.Heisenberg Ferromagnets 78

3.1.3.X-Y Ferromagnets 79

3.1.4.Uniaxial Nematics 80

3.1.5.Crystalline Solids 82

3.1.6.Order-Disorder Transitions in Alloys 83

3.2.The Specific Order Parameter of Liquid Crystals:The Director 83

3.2.1.Microscopic Definition 83

3.2.2.Macroscopic Properties 86

3.3.Light Propagation in Anisotropic Media;Application to Director Fields 90

3.3.1.Fresnel Equation 90

3.3.2.Ordinary and Extraordinary Waves 92

3.3.3.Observations in Polarized Light.Microscopy 95

4 Phase Transitions 105

4.1.Landau-de Gennes Model of the Uniaxial Nematic-Isotropic Phase Transition 106

4.2.Nematic Order and Statistical Theory of Rigid Rodlike Particles 109

4.2.1.Free Energy of a Solution of Spherical Particles 109

4.2.2.Free Energy of a Solution of Rigid Rods 113

4.3.Maier-Saupe Mean Field Theory of the Isotropic-Nematic Transition 115

4.4.The Smectic A-Nematic Transition 117

4.4.1.Order Parameter 117

4.4.2.Ginzburg-Landau Expansion 118

4.4.3.Analogy with Superconductors 120

4.4.4.Characteristic Lengths 121

4.4.5.Anomalies of K2 and K3 Coefficients 123

4.4.6.Abrikosov Phases with Dislocations 124

4.5.Kosterlitz-Thouless Model of Phase Transitions 129

5 Elasticity of Mesomorphic Phases 135

5.1.Uniaxial Nematics and Cholesterics 135

5.1.1.Elastic Free Energy Density 135

5.1.2.Geometrical Interpretations of Director Deformations 137

5.1.3.Material Elastic Constants 140

5.2.Lamellar Phases 143

5.2.1.Free Energy Density 143

5.2.2.Splay and Saddle-Splay Deformations 145

5.2.3.Free Energy Density for Small Deformations 148

5.3.Free Energy of a Nematic Liquid Crystal in an External Field 149

5.4.Standard Applications of the Elasticity of Nematics 153

5.4.1.Minimization of the Free Energy in the Generic Case 153

5.4.2.Hybrid-Aligned Nematic Film 157

5.4.3.External Field Effects:Characteristic Lengths and Frederiks Transitions 161

5.5.Standard Applications of the Elasticity of Smectics 164

5.5.1.Smectic Phase with Small Deformations 164

5.5.2.Smectic Phase with Large Deformations and Topological Deformations 167

5.6.Thermodynamic Fluctuations 170

5.6.1.Thermodynamic Fluctuations in Nematics 171

5.6.2.Thermodynamic Fluctuations in Smectics 173

Appendix A:One-Dimensional Variational Problem 174

5.A.1.Fixed Boundary Conditions 174

5.A.2.Soft Boundary Conditions 176

Appendix B:Formulae for Fourier Transforms 177

6 Dynamics of Isotropic and Anisotropic Fluids 184

6.1.Velocity Field and Stress Tensor 185

6.1.1.Material Derivatives and Components of Fluid Motion 185

6.1.2.Body and Surface Forces.Stress Tensor 187

6.2.Isotropic Fluid in Motion 189

6.2.1.Conservation of Mass:Contunuity Equation 189

6.2.2.Linear Momentum Equation 189

6.2.3.Energy Balance Equation 191

6.2.4.Entropy Production Equation 192

6.2.5.Viscous Stress Tensor 195

6.2.6.Navier-Stokes Equations.Reynolds Number.Laminar and Turbulent Flow 196

6.3.Nematodynamics in Ericksen-Leslie Model 198

6.3.1.Angular Momentum Equation 199

6.3.2.Energy Balance Equation 200

6.3.3.Entropy Production Equation 200

6.3.4.Nondissipative Dynamics 202

6.3.5.Dissipative Dynamics 202

6.4.Nematodynamics in Harvard Theory 205

6.4.1.Director Dynamics and Dissipative Stress Tensor 205

6.4.2.Summary of Nematodynamics 206

6.5.Applications of Nematodynamics 210

6.5.1.Nematic Viscosimetry 210

6.5.2.Flow-Aligning and Tumbling Nematics with Director in the Shear Plane 213

6.5.3.Instabilities with the Director Field Perpendicular to the Shear Plane 217

6.6.Hydrodynamic Modes 218

7 Fractals and Growth Phenomena 223

7.1.Basic Fractal Concepts 224

7.1.1.Length of a Line 224

7.1.2.Koch Curve 225

7.1.3.Self-Similarity 227

7.1.4.Estimating Fractal Dimensions 228

7.1.5.Deterministic and Stochastic Fractals 230

7.1.6.Brownian Motion and Random Walks 232

7.1.7.Pair Correlation Function 233

7.1.8.Inner and Outer Cutoffs 235

7.2.Percolation 235

7.2.1.Geometrical Percolation 235

7.2.2.Percolation and Second-Order Phase Transitions 239

7.2.3.Finite Clusters at the Percolation Threshold 240

7.2.4.Fractal Dimension of the Percolation Cluster 242

7.2.5.Percolation on Bethe Lattice 243

7.2.6.Percolation and the Renormalization Group 245

7.3.Aggregation 247

7.3.1.Cluster-Cluster Aggregation 249

7.3.2.The Witten-Sander Model of Diffusion-Limited Aggregation 249

7.3.3.Continuum Laplacian Model 250

7.4.Viscous Fingering in the Hele-Shaw Cell 252

7.4.1.Flow in Thin Cells 254

7.4.2.Instability of Interface 254

8 Dislocations in Solids.Plastic Relaxation 261

8.1.Elasticity of Dislocations 261

8.1.1.Linear Elasticity:A Summary 261

8.1.2.Applied Stresses and Internal Stresses 264

8.2.Volterra Dislocations 264

8.2.1.Definitions 264

8.2.2.Elastic Observables Related to Volterra Defects 266

8.3.Simple Topological Characteristics of Dislocations 269

8.3.1.Equivalent Circuits 269

8.3.2.Dislocations in Crystals 270

8.3.3.Imperfect Dislocations.Stacking Faults and Twins 272

8.4.Some Remarks on the Elastic Energy of a Dislocation 272

8.4.1.Stability 272

8.4.2.Image Forces;Peach and Kohler Forces 273

8.4.3.Line Tension 276

8.4.4.Frank and Read Mechanism 276

8.4.5.The Dislocation Core 278

8.5.Mobility of a Dislocation 279

8.5.1.Elementary Movements of a Dislocation 279

8.5.2.Glide and Peierls Stress 281

8.6.Point Defects and Climb 285

8.6.1.Vacancies and Interstitials 286

8.6.2.Diffusion of Point Defects and Autodiffusion 287

8.6.3.Creep 291

8.7.Ensembles of Dislocations 293

8.7.1.Frank Network 293

8.7.2.Sub-Boundaries 294

8.7.3.Large Misorientations,Twin and Epitaxy Dislocations,Martensitic Transformations 296

9 Dislocations in Smectic and Columnar Phases 300

9.1.Static Dislocations in Smectics 300

9.1.1.Edge Dislocations 300

9.1.2.Screw Dislocation 308

9.1.3.Line Tension of a Screw Dislocation 313

9.1.4.Stresses in an SmA and Peach and Kohler Forces 313

9.2.Dislocations in Columnar Phases 315

9.2.1.Longitudinal Edge Dislocations 315

9.2.2.Edge Transversal Dislocations 316

9.2.3.Screw Dislocations 318

9.2.4.Free Fluctuations of Longitudinal Dislocations 320

9.3.Hydrodynamics of a Smectic Phase 321

9.4.Dynamic Modes in Smectics 326

9.5.Movement of Isolated Dislocations in an SmA Phase 327

9.5.1.Edge Dislocation 327

9.5.2.Screw Dislocation 330

9.6.Collective Behavior of Dislocations and Instabilities 331

9.6.1.General Remarks 331

9.6.2.Collective Climb of Dislocations in SmA 332

9.6.3.Multiplication of Edge Dislocations 333

10 Curvature Defects in Smectics and Columnar Phases 337

10.1.Curvature in Solid Crystals 338

10.2.Curvature in Liquid Crystals:Some General Remarks 339

10.3.Curvature in Smectics 340

10.3.1.Historical Remarks 340

10.3.2.Congruences of Straight Normals and Focal Conic Domains 341

10.3.3.Congruences of Normals,Variations of Perfect Focal Conic Domains 343

10.4.Focal Conic Domains 345

10.4.1.The Analytical Approach:Basic Formulae 345

10.4.2.Different Species of Focal Conic Domains 347

10.5.Curvature Energy of FCDs 351

10.5.1.FCD-I :Negative Gaussian Curvature 352

10.5.2.Toric FCD with Negative Gaussian Curvature 354

10.5.3.Parabolic FCD with Negative Gaussian Curvature 355

10.5.4.FCD-Ⅱ:Positive Gaussian Curvature 358

10.6.Curvature Defects in Columnar Phases 359

10.6.1.General Considerations 359

10.6.2.Developable Domains 361

10.6.3.Classification of Developable Domains 363

10.7.FCDs in Lyotropic Lamellar Phases:Oily Streaks and Spherulites 365

10.7.1.Oily Streaks 365

10.7.2.Spherulites 367

10.8.Grain Boundaries and Space Filling with FCDs 368

10.8.1.Focal Conic Domains of the First Species 369

10.8.2.Focal Conic Domains of the Second Species 377

10.9.Rheophysics of FCDs 378

10.9.1.Global Viscoelastic Behavior and Alignment Under Shear 379

10.9.2.Textures 380

11 Disclinations and Topological Point Defects.Fluid Relaxation 388

11.1.Lines and Points in Uniaxial Nematics:Static Properties 389

11.1.1.Wedge Disclinations in Nematics 389

11.1.2.Nonsingular Disclinations 394

11.1.3.Twist Disclinations 399

11.1.4.Defect Lines in LCPs 400

11.1.5.Singular Points 400

11.1.6.Confinement-Induced Twists 402

11.2.Cholesterics 404

11.2.1.Elastic Theory at Different Scales 405

11.2.2.Weak Twist Deformations:Double Twist 406

11.2.3.Disclinations λ,τ,and x 408

11.2.4.Dislocations 410

11.2.5.Other Effects of the Layer Structure 412

11.3.Beyond the Volterra Process:First Step 414

11.3.1.Dislocations and Disclinations Densities in Relation with Disclinations 414

11.3.2.Extension to Finite Dislocations 418

11.3.3.Core Structure and Physical Properties 418

11.4.Dynamical Properties:General Features,Instabilities 419

11.4.1.General Features 420

11.4.2.Instabilities of Initially Defect-Free Samples 421

11.5.Dynamics of Defects 426

11.5.1.Isolated Disclination,Drag Force 426

11.5.2.Interaction and Annihilation of Line and Point Defects 427

11.5.3.Coarsening of Disclination Networks 430

12 Topological Theory of Defects 434

12.1.Basic Concepts of the Topological Classification 435

12.1.1.Topological Charges Illustrated with Mobius Strips 435

12.1.2.DNA and Twisted Strips,a Digression 436

12.1.3.Groups:Basic Definitions 438

12.1.4.General Scheme of the Topological Classification of Defects 439

12.1.5.Order Parameter Space.Groups That Describe Transformations of the Order Parameter 440

12.1.6.Homotopy Groups 441

12.1.7.Point Defects in a Two-Dimensional Nematic Phase 444

12.1.8.Point Dislocations in a Two-Dimensional Crystal 447

12.2.The Fundamental Group of the Order Parameter Space.Linear Defects 452

12.2.1.Unstable Disclinations in a Three-Dimensional Isotropic Ferromagnet 453

12.2.2.Stable Disclinations in a Three-Dimensional Uniaxial Nematic Phase 454

12.2.3.Disclinations in Biaxial Nematic and Cholesteric Phases 455

12.3.The Second Homotopy Group of the Order Parameter Space and Point Defects 459

12.3.1.Point Defects in a Three-Dimensional Ferromagnet 460

12.3.2.Topological Charges of Point Defects 461

12.3.3.Point Defects in a Three-Dimensional Nematic Phase 463

12.4.Solitons 464

12.4.1.Planar Solitons 464

12.4.2.Linear Solitons 466

12.4.3.Particlelike Solitons 467

13 Surface Phenomena 472

13.1.Surface Phenomena in Isotropic Media 472

13.1.1.Surface Tension and Thermodynamics of Flat Interfaces 472

13.1.2.Adsorption 475

13.1.3.Curved Interfaces 479

13.1.4.Surface Tension and Nucleation of the New Phase 483

13.1.5.Wetting 485

13.2.Surface Phenomena in Anisotropic Media 489

13.2.1.Equilibrium Shape(Wulff Shape)of Solid Crystals 489

13.2.2.Surface Anchoring in Nematic Liquid Crystals 493

13.2.3.Field Effects Under Finite Anchoring 496

13.2.4.Thin Liquid Crystal Films;Casimir Interactions 500

13.2.5.Topological Defects in Large Liquid Crystal Droplets 501

13.2.6.Smectic A Droplets 510

14 Stability of Colloidal Systems 519

14.1.Interactions Between Rigid Charged Surfaces 520

14.1.1.The Poisson-Boltzmann Equation 520

14.1.2.Fundamental Lengths in the Poisson-Boltzmann Problem 522

14.1.3.Free Energy and Maxwell Stress Tensor 524

14.1.4.Weak Electrolyte Solutions 526

14.1.5.Strong Electrolyte Solutions 528

14.1.6.The DLVO Theory:van der Waals versus Electrostatic Interactions 530

14.2.Interactions in Lamellar Flexible Systems 531

14.2.1.Elasticity of Neutral Membranes 533

14.2.2.Flexible Layers and Excluded Volume 540

14.2.3.The Lamellar,Sponge,and Cubic Phases;Microemulsions 546

14.3.Solutions of Colloidal Particles;Stability Properties 547

14.3.1.Brownian Flocculation 549

14.3.2.Depletion Flocculation 550

14.3.3.Stability Under Shear;Rheological Properties 551

14.3.4.Order versus Disorder 553

14.3.5.Measurements of Interactions in Colloidal Systems 555

15 Polymers:Structural Properties 560

15.1.Ideal and Flory Chains 561

15.1.1.Single-chain Conformations 563

15.1.2.The Ideal(or Gaussian)Chain 564

15.1.3.Pair Correlation Function and Radius of Gyration 567

15.1.4.The Flory Chain 568

15.2.Chains in Interaction 572

15.2.1.The Mean Field Approach 573

15.2.2.Scaling Laws for Athermal Solutions 577

15.3.Phase Separation in Polymer Solutions and Polymer Blends 580

15.3.1.Liquid Equilibrium States versus Nonequilibrium States 580

15.3.2.First-Order Phase Transitions:An Overview 582

15.3.3.Polymer Blends 586

15.3.4.Microscopic Phase Separation into Block Copolymers 588

15.4.Rigid and Semiflexible Polymers 590

15.4.1.Rigid Rods 590

15.4.2.Semiflexible Polymers 591

15.4.3.Chirality 593

Appendix A:The Central Limit Theorem 593

Appendix B:Isothermal Compressibility and Density Fluctuations;Static Linear Response 595

Table of Constants 604

Name Index 605

Subject Index 617

精品推荐