图书介绍

The Theory of Group Characters and Matrix Representations of Groups Second Editionpdf电子书版本下载

The Theory of Group Characters and Matrix Representations of Groups Second Edition
  • Dudley E.Littlewood 著
  • 出版社:
  • ISBN:
  • 出版时间:1950
  • 标注页数:310页
  • 文件大小:64MB
  • 文件页数:318页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快] 温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页 直链下载[便捷但速度慢]   [在线试读本书]   [在线获取解压码]

下载说明

The Theory of Group Characters and Matrix Representations of Groups Second EditionPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ.MATRICES 1

1.1.Linear transformations 1

1.2.Matrices 2

1.3.The transform of a matrix 4

1.4.Rectangular matrices and vectors 5

1.5.The characteristic equation of a matrix 6

1.6.The classical canonical form of a matrix 7

1.7.The classical canonical form;multiple characteristic roots 8

1.8.Various properties of matrices 14

1.9.Unitary and orthogonal matrices 15

Ⅱ.ALGEBRAS 22

2.1.Definition of an algebra over the complex numbers 22

2.2.Change of basis and the regular matrix representation 23

2.3.Simple matrix algebras 25

2.4.Examples of associative algebras 25

2.5.Linear sets and sub-algebras 26

2.6.Modulus,idempotent and nilpotent elements 26

2.7.The reduced characteristic equation 27

2.8.Reduction of an algebra relative to an idempotent 29

2.9.The trace of an element 31

Ⅲ.GROUPS 32

3.1.Definition of a group 32

3.2.Subgroups 33

3.3.Examples of groups 34

3.4.Permutation groups 36

3.5.The alternating group 37

3.6.Classes of conjugate elements 38

3.7.Conjugate and self-conjugate subgroups 40

3.8.The representations of an abstract group as a permutation group 41

Ⅳ.THE FROBENIUS ALGEBRA 43

4.1.Groups and algebras 43

4.2.The group characters 45

4.3.Matrix representations and group matrices 48

4.4.Characteristic units 56

4.5.The relations between the characters of a group and those of a subgroup 57

Ⅴ.THE SYMMETRIC GROUP 59

5.1.Partitions 59

5.2.Frobenius's formula for the characters of the symmetric group 61

5.3.Characters and lattices 67

5.4.Primitive characteristic units and Young tableaux 71

Ⅵ.IMMANANTS AND S-FUNCTIONS 81

6.1.Immanants of a matrix 81

6.2.Schur functions 82

6.3.Properties of S-functions 87

6.4.Generating functions and further properties of S-functions 98

6.5.Relations between immanants and S-functions 118

Ⅶ.S-FUNCTIONS OF SPECIAL SERIES 122

7.1.The function φ(q,x) 122

7.2.The functions (1-x)-n and (1-xr)-m 126

7.3.S-functions associated with f(xr) 131

Ⅷ.THE CALCULATION OF THE CHARACTERS OF THE SYMMETRIC GROUP 137

8.1.Frobenius's formula 137

S-functions of special series 138

Recurrence relations 140

Congruences 142

Classes for which the orders of the cycles have a common factor 143

Graphs and lattices 146

Orthogonal properties 146

Ⅸ.GROUP CHARACTERS AND THE STRUCTURE OF GROUPS 147

9.1.The compound character associated with a subgroup 147

9.2.Deduction of the characters of a subgroup from those of the group 150

9.3.Determination of subgroups:necessary criteria that a compound character should correspond to a permutation representation of the group 155

9.4.The properties of groups and character tables 159

9.5.Transitivity 164

9.6.Invariant subgroups 171

Ⅹ.CONTINUOUS MATRIX GROUPS AND INVARIANT MATRICES 178

10.1.Invariant matrices 178

10.2.The classical canonical form of an invariant matrix 193

10.3.Application to invariant theory 203

Ⅺ.GROUPS OF UNITARY MATRICES 210

11.1.Introductory 210

11.2.Fundamental formula for integration over the group manifold 211

11.3.Simplification of integration formulae for class functions 217

11.4.Verification of the orthogonal properties of the characters of the unitary group 222

11.5.Orthogonal matrices and the rotation groups 223

11.6.Relations between the characters of D and D' 225

11.7.Integration formulae connected with D and D' 227

11.8.The characters of the orthogonal group 233

11.9.Alternative forms for the characters of the orthogonal group 238

11.10.The difference characters of the rotation group 245

11.11.The spin representations of the orthogonal group 248

11.12.Complex orthogonal matrices and groups of matrices with a quadratic invariant 260

APPENDIX 265

Tables of Characters of the Symmetric Groups 265

Tables of Characters of Transitive Subgroups.Alternating Groups 272

General Cyclic Group of Order n 273

Other Transitive Subgroups 273

Some Recent Developments 285

BIBLIOGRAPHY 301

SUPPLEMENTARY BIBLIOGRAPHY 306

INDEX 309

精品推荐