图书介绍
NUCLEAR AND PARTICLE PHYSICS SECOND EDITIONpdf电子书版本下载
- B.R.MARTIN 著
- 出版社: JOHN WILEY & SONS LTD
- ISBN:
- 出版时间:2009
- 标注页数:453页
- 文件大小:92MB
- 文件页数:469页
- 主题词:
PDF下载
下载说明
NUCLEAR AND PARTICLE PHYSICS SECOND EDITIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Basic Concepts 1
1.1 History 1
1.1.1 The Origins of Nuclear Physics 1
1.1.2 The Emergence of Particle Physics:the Standard Model and Hadrons 3
1.2 Relativity and Antiparticles 6
1.3 Space-Time Symmetries and Conservation Laws 8
1.3.1 Parity 9
1.3.2 Charge Conjugation 10
1.3.3 Time Reversal 12
1.4 Interactions and Feynman Diagrams 14
1.4.1 Interactions 14
1.4.2 Feynman Diagrams 15
1.5 Particle Exchange:Forces and Potentials 17
1.5.1 Range of Forces 17
1.5.2 The Yukawa Potential 19
1.6 Observable Quantities:Cross-sections and Decay Rates 20
1.6.1 Amplitudes 20
1.6.2 Cross-sections 22
1.6.3 Unstable States 26
1.7 Units:Length,Mass and Energy 28
Problems 29
2 Nuclear Phenomenology 31
2.1 Mass Spectroscopy 31
2.1.1 Deflection Spectrometers 32
2.1.2 Kinematic Analysis 33
2.1.3 Penning Trap Measurements 34
2.2 Nuclear Shapes and Sizes 38
2.2.1 Charge Distribution 39
2.2.2 Matter Distribution 43
2.3 Semi-Empirical Mass Formula:the Liquid Drop Model 45
2.3.1 Binding Energies 45
2.3.2 Semi-empirical Mass Formula 47
2.4 Nuclear Instability 52
2.5 Radioactive Decay 53
2.6 β-Decay Phenomenology 56
2.6.1 Odd-mass Nuclei 56
2.6.2 Even-mass Nuclei 58
2.7 Fission 59
2.8 γ Decays 62
2.9 Nuclear Reactions 63
Problems 67
3 Particle Phenomenology 71
3.1 Leptons 71
3.1.1 Lepton Multiplets and Lepton Numbers 71
3.1.2 Universal Lepton Interactions:the Number of Neutrinos 74
3.1.3 Neutrinos 76
3.1.4 Neutrino Mixing and Oscillations 77
3.1.5 Oscillation Experiments and Neutrino Masses 80
3.1.6 Lepton Numbers Revisited 86
3.2 Quarks 87
3.2.1 Evidence for Quarks 87
3.2.2 Quark Generations and Quark Numbers 90
3.3 Hadrons 92
3.3.1 Flavour Independence and Charge Multiplets 92
3.3.2 Quark Model Spectroscopy 96
3.3.3 Hadron Magnetic Moments and Masses 101
Problems 107
4 Experimental Methods 109
4.1 Overview 109
4.2 Accelerators and Beams 111
4.2.1 DC Accelerators 111
4.2.2 AC Accelerators 112
4.2.3 Neutral and Unstable Particle Beams 119
4.3 Particle Interactions with Matter 120
4.3.1 Short-range Interactions with Nuclei 120
4.3.2 Ionization Energy Losses 122
4.3.3 Radiation Energy Losses 124
4.3.4 Interactions of Photons in Matter 125
4.4 Particle Detectors 127
4.4.1 Gas Detectors 128
4.4.2 Scintillation Counters 132
4.4.3 Semiconductor Detectors 133
4.4.4 Cerenkov Counters 134
4.4.5 Calorimeters 135
4.5 Multi-Component Detector Systems 138
Problems 143
5 Quark Dynamics:The Strong Interaction 147
5.1 Colour 147
5.2 Quantum Chromodynamics(QCD) 149
5.3 Heavy Quark Bound States 151
5.4 The Strong Coupling Constant and Asymptotic Freedom 156
5.5 Quark-Gluon Plasma 160
5.6 Jets and Gluons 161
5.7 Colour Counting 163
5.8 Deep Inelastic Scattering and Nucleon Structure 165
5.8.1 Scaling 165
5.8.2 Quark-Parton Model 167
5.8.3 Scaling Violations and Structure Functions 170
Problems 173
6 Weak Interactions and Electroweak Unification 177
6.1 Charged and Neutral Currents 177
6.2 Symmetries of the Weak Interaction 178
6.3 Spin Structure of the Weak Interactions 182
6.3.1 Neutrinos 182
6.3.2 Particles with Mass:Chirality 184
6.4 W± and Z0 Bosons 187
6.5 Weak Interactions of Hadrons:Charged Currents 188
6.5.1 Semileptonic Decays 189
6.5.2 Selection Rules 192
6.5.3 Neutrino Scattering 195
6.6 Meson Decays and CP Violation 197
6.6.1 CP Invariance 197
6.6.2 CP Violation in K 0 L Decay 199
6.6.3 CP Violation in B Decays 201
6.6.4 Flavour Oscillations 203
6.6.5 CP Violation and the Standard Model 205
6.7 Neutral Currents and the Unified Theory 207
6.7.1 Electroweak Unification 207
6.7.2 The Z0 Vertices and Electroweak Reactions 210
Problems 213
7 Models and Theories of Nuclear Physics 217
7.1 The Nucleon-Nucleon Potential 217
7.2 Fermi Gas Model 220
7.3 Shell Model 222
7.3.1 Shell Structure of Atoms 222
7.3.2 Nuclear Magic Numbers 224
7.3.3 Spins,Parities and Magnetic Dipole Moments 227
7.3.4 Excited States 229
7.4 Non-Spherical Nuclei 231
7.4.1 Electric Quadrupole Moments 231
7.4.2 Collective Model 234
7.5 Summary of Nuclear Structure Models 234
7.6 α Decay 235
7.7 β Decay 238
7.7.1 Fermi Theory 239
7.7.2 Electron and Positron Momentum Distributions 240
7.7.3 Selection Rules 242
7.7.4 Applications of Fermi Theory 243
7.8 γ Emission and Internal Conversion 247
7.8.1 Selection Rules 247
7.8.2 Transition Rates 248
Problems 250
8 Applications of Nuclear Physics 253
8.1 Fission 253
8.1.1 Induced Fission and Chain Reactions 253
8.1.2 Fission Reactors 257
8.2 Fusion 262
8.2.1 Coulomb Barrier 262
8.2.2 Fusion Reaction Rates 264
8.2.3 Stellar Fusion 266
8.2.4 Fusion Reactors 268
8.3 Nuclear Weapons 271
8.3.1 Fission Devices 273
8.3.2 Fission/Fusion Devices 275
8.4 Biomedical Applications 278
8.4.1 Radiation and Living Matter 278
8.4.2 Medical Imaging Using Ionizing Radiation 283
8.4.3 Magnetic Resonance Imaging 289
Problems 294
9 Outstanding Questions and Future Prospects 297
9.1 Overview 297
9.2 Hadrons and Nuclei 298
9.2.1 Hadron Structure and the Nuclear Environment 298
9.2.2 Nuclear Structure 300
9.2.3 Nuclear Synthesis 302
9.2.4 Symmetries and the Standard Model 303
9.3 The Origin of Mass:the Higgs Boson 305
9.3.1 Theoretical Background 305
9.3.2 Experimental Searches 307
9.4 The Nature of the Neutrino 311
9.4.1 Dirac or Majorana? 311
9.4.2 Neutrinoless Double β Decay 312
9.5 Beyond the Standard Model:Unification Schemes 315
9.5.1 Grand Unification 315
9.5.2 Supersymmetry 318
9.5.3 Strings and Things 321
9.6 Particle Astrophysics 322
9.6.1 Neutrino Astrophysics 323
9.6.2 The Early Universe:Dark Matter and Neutrino Masses 327
9.6.3 Matter-Antimatter Asymmetry 330
9.7 Nuclear Medicine 331
9.8 Power Production and Nuclear Waste 333
Appendix A Some Results in Quantum Mchanics 339
A.1 Barrier Penetration 339
A.2 Density of States 341
A.3 Perturbation Theory and the Second Golden Rule 343
A.4 Isospin Formalism 345
A.4.1 Isospin Operators and Quark States 345
A.4.2 Hadron States 347
Appendix B Relativistic Kinematics 351
B.1 Lorentz Transformations and Four-Vectors 351
B.2 Frames of Reference 353
B.3 Invariants 355
Problems 358
Appendix C Rutherford Scattering 361
C.1 Classical Physics 361
C.2 Quantum Mechanics 364
Problems 365
Appendix D Gauge Theories 367
D.1 Gauge Invariance and the Standard Model 367
D.1.1 Electromagnetism and the Gauge Principle 368
D.1.2 The Standard Model 370
D.2 Particle Masses and the Higgs Field 372
Appendix E Data 377
E.1 Physical Constants and Conversion Factors 377
E.2 Tables of Particle Properties 378
E.2.1 Gauge Bosons 378
E.2.2 Leptons 379
E.2.3 Quarks 379
E.2.4 Low-Lying Baryons 380
E.2.5 Low-Lying Mesons 382
E.3 Tables of Nuclear Properties 384
E.3.1 Properties of Naturally Occurring Isotopes 384
E.3.2 The Periodic Table 392
Appendix F Solutions to Problems 393
References 437
Bibliography 441
Index 443