图书介绍
Principles of Physical Metallurgypdf电子书版本下载
- Morton C.Smith 著
- 出版社: Allied Pacific Private Limited.
- ISBN:
- 出版时间:1962
- 标注页数:417页
- 文件大小:126MB
- 文件页数:428页
- 主题词:
PDF下载
下载说明
Principles of Physical MetallurgyPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1.The Atom 1
1.1 General Structure of the Atom 1
1.2 Electrons 3
1.3 Motion of the Electron 5
1.4 The Exclusion Principle 5
1.5 Energy Levels Within the Atom 6
1.6 Energy-Level Diagrams 7
1.7 Degeneracy of Energy Levels 10
1.8 Shells of Electrons 11
1.9 Chemical Valence 12
1.10 The Periodic Table 15
1.11 Multiple Valences 24
1.12 Free Energy 25
1.13 Spontaneous Changes 26
1.14 Chemical Activity 28
1.15 Activity Series for the Nonmetals 30
Chapter 2.Crystallography 32
2.1 Metal Crystals 32
2.2 Space Lattices in General 33
2.3 The Fourteen Possible Space Lattices 34
2.4 The Possibility of Additional Space Lattices 37
2.5 Crystallographic Notation 38
2.6 Reference Axes 39
2.7 The Seven Crystal Systems 41
2.8 Intercepts 43
2.9 Miller Indices 43
2.10 Sets and Families of Planes 45
2.11 Indices of Direction 47
2.12 Miller-Bravais Indices 51
2.13 Hexagonal Indices of Direction 53
Chapter 3.Crystal Structures 56
3.1 Solids,Liquids,and Gases 56
3.2 Cystalline vs.Amorphous Solids 58
3.3 Crystal Lattices 60
3.4 Important Planes and Directions 62
3.5 Bonding Forces in Crystals 64
3.6 Molecular Crystals 65
3.7 Ionic Crystals 67
3.8 Intermetallic Compounds of the Ionic Type 71
3.9 Valence Crystals 73
3.10 The 8 Minus N Rule 76
3.11 Valence-Molecular Crystals 77
3.12 Metallic Crystals 79
3.13 The Metallic Bond 80
3.14 Metallics vs.Ionic and Covalent Bonding 82
3.15 The Structures of Metallic Crystals 83
3.16 The Close-Packed Hexagonal(C.P.Hex.)Structure 84
3.17 Characteristics of the Close-Packed Hexagonal Structure 87
3.18 Examples of Close-Packed Hexagonal Crystals 89
3.19 The Face-Centered Cubic(F.C.C.)Structure 90
3.20 The Body-Centered Cubic(B.C.C.)Structure 93
3.21 Other Crystal Structures 94
3.22 Rationalization of Observed Crystal Structures 96
3.23 Electron Concentration 98
Chapter 4.Polymorphism 100
4.1 Polymorphic Transformations 100
4.2 Examples of Polymorphism 101
4.3 The Theoretical Basis for Polymorphism 102
4.4 Bonding Forces and Polymorphism 105
4.5 Hysteresis and Activation Energies 107
4.6 Transition Structures 110
4.7 The Martensite Transformation 112
Chapter 5.Crystal Imperfections 115
5.1 Elastic Distortion 115
5.2 Free Metal Surfaces 116
5.3 Surface Energy 117
5.4 Freezing of a Pure Metal 119
5.5 Grain Boundaries 121
5.6 Residual Affinity;Heterogeneous Alloys 124
5.7 Grain Growth 125
5.8 Spheroidization 127
5.9 Amorphous Metal;the Beilby Layer 130
5.10 Vacant Lattice Points;Diffusion 134
5.11 Defect Lattices 137
5.12 Dislocations 138
5.13 Mosaic Structure 141
5.14 Lineage Structure 143
5.15 Alloy Types 144
5.16 Crystal Distortion by Foreign Atoms 147
5.17 Determination of Solubility Limits 149
5.18 Interstitial Solid Solutions 151
5.19 Interstitial Compounds 153
5.20 Substitutional Solid Solutions 154
5.21 Relative Valence Effect 155
5.22 Electron Concentration vs.Extent of Solubility 156
5.23 Ordered Substitutional Solid Solutions 158
5.24 The Physical Basis of Ordering 159
5.25 Long-Range and Short-Range Order 161
5.26 Imperfectly Ordered Solid Solutions 163
5.27 Ordered Solid Solutions vs.Compounds 164
5.28 Order in Interstitial Solid Solutions 165
Chapter 6.Electrical and Magnetic Properties of Metals 167
6.1 Electrical Conduction 167
6.2 The Electron Cloud in Conductors 167
6.3 The Necessity for Excitation 168
6.4 Electrical Conductors 169
6.5 Electrical Insulators 171
6.6 Semi-conductors 172
6.7 Photoconductors 172
6.8 The Band Theory in General 172
6.9 Electrical Resistance 173
6.10 Magnetism 176
6.11 Diamagnetism 176
6.12 Paramagnetism 177
6.13 Ferromagnetism 179
6.14 Magnetic Applications 181
6.15 Magnetic Materials 182
Chapter 7.Deformation of Metals 184
7.1 Toughness 184
7.2 Elastic vs.Plastic Deformation 186
7.3 Elastic Deformation 187
7.4 Importance of the Elastic Modulus 188
7.5 The Stress-Strain Curve 191
7.6 Instantaneous Stress vs.Strain 193
7.7 Simultaneous Elastic and Permanent Deformation 196
7.8 Springback 198
7.9 Type of Loading for Permanent Deformation 198
7.10 Resolution of Forces 201
7.11 Effect of Type of Bond on the Possibility of Slip 202
7.12 Slip Planes and Slip Directions 204
7.13 Slip in Close-Packed Hexagonal Crystals 205
7.14 Behavior of a Zinc Single Crystal in Tension 207
7.15 Slip in Face-Centered Cubic Crystals 209
7.16 Slip in Body-Centered Cubic Crystals 210
7.17 Slip in Other Crystal Structures 211
7.18 Progress of Slip in a Single Crystal 211
7.19 Force Required to Produce Slip 215
7.20 Slip by Movement of a Dislocation 217
7.21 Shearing Force to Move a Dislocation 219
7.22 Origin of Initial Slip 221
7.23 Cessation of Slip on an Active Slip Plane 223
7.24 Slip-Interference Theories of Strain Hardening 224
7.25 Dislocation Theory of Strain Hardening 226
7.26 Stress Field of a Dislocation 227
7.27 Interactions Among Dislocations 228
7.28 Development of a Dislocation Lattice 229
7.29 Incidental Effects of the Dislocation Lattice 230
7.30 Mechanical Twinning 232
7.31 The Mechanism of Twinning 234
7.32 The Importance of Twinning 236
7.33 Microscopic Appearance of Twins 237
7.34 Distinction Between Twin Bands and Slip Bands 240
7.35 Deformation of Polycrystalline Aggregates 242
7.36 The Influence of Grain Boundaries 243
7.37 Effect of Alloying on Permanent Deformation 246
Chapter 8.The Effects of Permanent Deformation 249
8.1 Strain Hardening(Work Hardening) 249
8.2 Industrial Importance of Strain Hardening 255
8.3 Change in Shape of Individual Crystals 258
8.4 Banding and Flow Lines(Mechanical Fibering) 260
8.5 Mechanical Effects of Banding 263
8.6 Orange-Peel Structure 265
8.7 Deformation Bands(Strain Markings) 266
8.8 Homogeneous Crystal Rotation 269
8.9 Preferred Orientation(Crystallographic Fibering) 273
8.10 Industrial Importance of Preferred Orientation 275
8.11 Strain Hardening from Preferred Orientation 280
8.12 Energy Changes from Mechanical Deformation 281
8.13 Macrostresses(Heyn Stresses) 282
8.14 Microstresses 283
8.15 Bauschinger Effect 284
8.16 Elastic Aftereffect(Elastic Hysteresis) 286
8.17 Damping 287
8.18 Other Structure-Sensitive Properties 289
8.19 Structure-Insensitive Properties 291
Chapter 9.The Effects of Elevated Temperature 293
9.1 Diffusion 293
9.2 Grain Growth 295
9.3 Factors Favoring Grain Growth 296
9.4 Temperature.Time and Grain Size 299
9.5 Effect of Intergranular Films on Grain Growth 301
9.6 Recovery(Resoftening) 303
9.7 Low-Temperature Stress Relief;the Light Anneal 304
9.8 Recrystallization 305
9.9 Nucleation 306
9.10 Crystal Growth 310
9.11 The Full Anneal;Recrystallized Grain Size 311
9.12 Development of Coarse Recrystallized Grain Size 312
9.13 Microstructure After Recrystallization 317
9.14 Annealing Textures 318
9.15 Annealing Twins 321
9.16 Hot vs.Cold Mechanical Working 321
9.17 Advantages of Hot Working 323
9.18 Disadvantages of Hot Working 327
9.19 Force Required to Produce Permanent Deformation 331
9.20 Effect of Duration or Rate of Loading 333
9.21 Hot Pressing 337
9.22 Creep 338
9.23 The Creep Curve 339
9.24 Effect of Magnitude of Load upon the Creep Curve 340
9.25 Creep Strength,Creep Life,and Creep Limit 341
9.26 Effect of Temperature upon the Creep Curve 342
9.27 Mechanism of Permanent Deformation During Creep 344
9.28 Selection of Metals for Creep Service 348
Chapter 10.Fracture 353
10.1 Type of Force Required to Produce Cracking 353
10.2 Shear Fractures 355
10.3 Energy Relations in Cracking;Inherent Strength of Crystals 358
10.4 Fracture Strengths of Polycrystalline Metals 359
10.5 Location of Cracks 368
10.6 Appearance of Fracture Surfaces 369
10.7 Permanent Deformation During Fracture 370
10.8 Polyaxial Stresses 372
10.9 Notch Sensitivity 377
10.10 Conclusions Concerning Fractures 379
10.11 Fatigue Failure(Detail Fracture) 381
10.12 Formation and Extension of Fatigue Cracks 382
10.13 Appearance of Fatigue-Fracture Surfaces 384
10.14 Type of Loading to Produce Fatigue Cracking 385
10.15 Prevention of Fatigue Failures 387
10.16 Fatigue Testing 398
10.17 Fatigue Testing Machines 400
10.18 Surface Finish 403
10.19 Size Effect 403
10.20 Corrosion-Fatigue Testing 405
10.21 Usefulness of Fatigue Testing 406
Index 407