图书介绍
Invariants of Quadratic Differential Formspdf电子书版本下载
- Oswald Veblen 著
- 出版社: At The University Press
- ISBN:
- 出版时间:1927
- 标注页数:102页
- 文件大小:19MB
- 文件页数:111页
- 主题词:
PDF下载
下载说明
Invariants of Quadratic Differential FormsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ.FORMAL PRELIMINARIES 1
1.The summation convention 1
2,3.The Kronecker deltas 3
4.Linear equations 6
5,6.Functional Determinants 7
7.Derivative of a determinant 8
8.Numerical relations 8
9,10.Minors,cofactors,and the Laplace expansion 9
11.Historical 11
Ⅱ.DIFFERENTIAL INVARIANTS 13
1.N-dimensional space 13
2.Transformations of coordinates 13
3.Invariants 14
4.Differential invariants 15
5,6.Differentials and contravariant vectors 16
7.A general class of invariants 19
8.Tensors 19
9.Relative scalars 20
10.Covariant vectors 21
11,12.Algebraic combinations of tensors 22
13.The commonness of tensors 24
14.Numerical tensors 25
15.Combinations of vectors 26
16.Historical and general remarks 27
Ⅲ.QUADRATIC DIFFERENTIAL FORMS 30
1.Differential forms 30
2.Linear differential forms 30
3,4.Quadratic differential forms 31
5.Invariants derived from basic invariants 32
6,7.Invariants of a quadratic differential form 32
8,9.The fundamental affine connection 33
10.Affine connections in general 35
11,12.Covariant differentiation 36
13.Geodesic coordinates 38
14,15.Formulas of covariant differentiation 39
16,17.The curvature tensor 41
18,19.Riemann-Christoffel tensor 43
20.Reduction theorems 44
21.Historical remarks 47
22.Scalar invariants 48
Ⅳ.EUCLIDEAN GEOMETRY 50
1,2.Euclidean geometry 50
3.Euclidean affine geometry 53
4,5.Euclidean vector analysis 55
6.Associated vectors and tensors 56
7.Distance and scalar product 57
8,9.Area 59
10.First order differential parameters 60
11.Euclidean covariant differentiation 61
12.The divergence 62
13.The Laplacian or Lamé differential parameter of the second order 63
14.The curl of a vector 64
15,16.Generalized divergence and curl 64
17.Historical remarks 66
Ⅴ.THE EQUIVALENCE PROBLEM 67
1.Riemannian geometry 67
2.The theory of surfaces 68
3.Spaces immersed in a Euclidean space 69
4,5.Condition that a Riemannian space be Euclidean 69
6.The equivalence problem 72
7.A lemma on mixed systems 73
8.Equivalence theorem for quadratic differential forms 76
9.Equivalence of affine connections 77
10,11.Automorphisms of a quadratic differential form 78
12.Equivalence theorem in terms of scalars 79
13.Historical remarks 80
Ⅵ.NORMAL COORDINATES 82
1,2.Affine geometry of paths 82
3,4.Affine normal coordinates 85
5.Affine extensions 87
6.The affine normal tensors 89
7,8.The replacement theorems 90
9,10,11,12.The curvature tensor and the normal tensors 91
13,14,15,16,17.Affine extensions of the fundamental tensor 94
18.Historical and general remarks 100
19.Formulas for the extensions of tensors 102