图书介绍
SAS金融数据挖掘与建模 系统方法与案例解析pdf电子书版本下载
- 陈春宝,徐筱刚,田建中著 著
- 出版社: 北京:机械工业出版社
- ISBN:9787111580478
- 出版时间:2017
- 标注页数:208页
- 文件大小:23MB
- 文件页数:223页
- 主题词:金融统计-统计分析-应用软件
PDF下载
下载说明
SAS金融数据挖掘与建模 系统方法与案例解析PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如 BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 金融数据挖掘与建模应用场景 1
1.1 客户数据挖掘的价值 1
1.2 金融客户生命周期及数据应用场景 3
1.3 最具代表性的数据应用场景 7
第2章 客户获取:信用卡客户欺诈评分案例 8
2.1 案例背景 9
2.2 数据准备与预处理 10
2.2.1 数据源 10
2.2.2 变量设计 11
2.3 构建评分模型 13
2.3.1 算法选择 13
2.3.2 模型训练 14
2.3.3 模型评估 16
2.4 评分模型的应用 19
2.5 小结 20
第3章 客户提升:信用卡客户精准营销案例 21
3.1 案例背景 21
3.2 建模准备 21
3.2.1 准备数据 22
3.2.2 数据预处理 26
3.2.3 过度抽样 27
3.2.4 构造训练集及测试集 30
3.3 数据清洗及变量粗筛 32
3.3.1 连续变量与连续变量之间 33
3.3.2 分类变量和分类变量之间 39
3.3.3 分类变量和连续变量之间 43
3.3.4 数据的错误及缺失值 47
3.3.5 数据离群值 53
3.3.6 重编码 59
3.4 变量压缩与转换变量 61
3.4.1 分类变量的水平数压缩 61
3.4.2 连续变量聚类 65
3.4.3 连续变量的分箱 77
3.4.4 变量的转换 79
3.5 模型训练 80
3.5.1 关于Logistic回归 80
3.5.2 变量筛选方法 81
3.6 模型评估 88
3.6.1 模型估计 88
3.6.2 模型评估 89
3.6.3 调整过度抽样 98
3.6.4 收益矩阵 98
3.6.5 模型转换为打分卡 100
3.7 模型的部署及更新 100
3.7.1 模型的部署 100
3.7.2 模型的监测及更新 101
3.8 本章小结 103
第4章 客户成熟:银行零售客户渠道偏好细分案例 104
4.1 案例背景 104
4.2 聚类分析流程 105
4.3 数据标准化 107
4.3.1 标准化介绍 107
4.3.2 标准化实现 110
4.4 变量聚类 111
4.4.1 变量聚类介绍 111
4.4.2 变量聚类基本步骤 112
4.4.3 SAS实现变量聚类 113
4.5 变量降维与可视化 118
4.5.1 图形化探索 118
4.5.2 主成分分析法降维 120
4.6 ACECLUS预处理过程 123
4.6.1 ACECLUS介绍 123
4.6.2 ACECLUS过程 123
4.6.3 ACECLUS示例 123
4.7 系统聚类分析 128
4.7.1 系统聚类法 128
4.7.2 样本与样本之间的度量 129
4.7.3 距离定义与测量 129
4.7.4 相关系数 131
4.7.5 类与类之间的度量 131
4.7.6 系统聚类法 139
4.7.7 不同系统聚类法之间的比较 140
4.7.8 类个数的确定 158
4.8 快速聚类 159
4.8.1 快速聚类法 159
4.8.2 快速聚类法实现 160
4.8.3 快速聚类法优缺点 161
4.9 两步聚类法 161
4.9.1 两步聚类法 161
4.9.2 两步聚类法实现 161
4.10 本章小结 167
第5章 客户衰退:银行贷款违约预测案例 168
5.1 案例背景 169
5.2 维度分析 170
5.3 建模分析 177
5.4 业务应用 179
5.5 小结 179
第6章 客户挽留:信用卡客户流失管理案例 180
6.1 案例背景 181
6.2 数据准备 182
6.2.1 设定目标变量 182
6.2.2 设定时间窗 183
6.2.3 设计预测变量 184
6.2.4 准备数据宽表 185
6.3 流失倾向预警:用Logistic回归构建响应率模型 186
6.3.1 粗分类 187
6.3.2 计算分组变量的WOE值和IV值 191
6.3.3 共线性检验 194
6.3.4 模型训练:显著性检验 195
6.3.5 模型评估 196
6.4 潜在客户价值预测:两阶段建模法 201
6.4.1 阶段1概率预测 201
6.4.2 阶段2数值预测 201
6.4.3 模型评估 203
6.5 细分:差异化营销服务的基础 204
6.6 小结 208